Meditron-Finetuned
Collection
4 items
•
Updated
•
1
meditron-7b-chat is a finetuned version of epfl-llm/meditron-7b
using SFT Training on the Alpaca Dataset.
This model can answer information about different excplicit ideas in medicine (see epfl-llm/meditron-7b
for more info)
Mohamad Alhajar
epfl-llm/meditron-7b
### Instruction:
<prompt> (without the <>)
### Response:
Use the code sample provided in the original post to interact with the model.
from transformers import AutoTokenizer,AutoModelForCausalLM
model_id = "malhajar/meditron-7b-chat"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
device_map="auto",
torch_dtype=torch.float16,
revision="main")
tokenizer = AutoTokenizer.from_pretrained(model_id)
question: "what is tract infection?"
# For generating a response
prompt = '''
### Instruction:
{question}
### Response:'''
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
output = model.generate(inputs=input_ids,max_new_tokens=512,pad_token_id=tokenizer.eos_token_id,top_k=50, do_sample=True,
top_p=0.95)
response = tokenizer.decode(output[0])
print(response)
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 49.59 |
AI2 Reasoning Challenge (25-Shot) | 50.77 |
HellaSwag (10-Shot) | 75.37 |
MMLU (5-Shot) | 40.49 |
TruthfulQA (0-shot) | 48.56 |
Winogrande (5-shot) | 73.16 |
GSM8k (5-shot) | 9.17 |
Base model
meta-llama/Llama-2-7b