license: cc-by-nc-sa-4.0
datasets:
- jeffwan/sharegpt_vicuna
- Hello-SimpleAI/HC3
- tatsu-lab/alpaca
- Anthropic/hh-rlhf
- victor123/evol_instruct_70k
tags:
- Composer
- MosaicML
- llm-foundry
inference: false
I'm constantly enhancing these model descriptions to provide you with the most relevant and comprehensive information
mpt-7b-chat - GGUF
- Model creator: mosaicml
- Original model: mpt-7b-chat
Important Update for Falcon Models in llama.cpp Versions After October 18, 2023
As noted on the Llama.cpp GitHub repository, all new Llama.cpp releases after October 18, 2023, will require a re-quantization due to the new BPE tokenizer.
Good news! I am glad that my re-quantization process for Falcon Models is nearly complete. Download the latest quantized models to ensure compatibility with recent llama.cpp software.
Key Points:
- Stay Informed: Keep an eye on software application release schedules using llama.cpp libraries.
- Monitor Upload Times: Re-quantization is almost done. Watch for updates on my Hugging Face Model pages.
Important Compatibility Note: Old software will work with old Falcon models, but expect updated software to exclusively support the new models.
This change primarily affects Falcon and Starcoder models, with other models remaining unaffected.
About GGUF format
gguf
is the current file format used by the ggml
library.
A growing list of Software is using it and can therefore use this model.
The core project making use of the ggml library is the llama.cpp project by Georgi Gerganov
Quantization variants
There is a bunch of quantized files available. How to choose the best for you:
Legacy quants
Q4_0, Q4_1, Q5_0, Q5_1 and Q8 are legacy
quantization types.
Nevertheless, they are fully supported, as there are several circumstances that cause certain model not to be compatible with the modern K-quants.
Falcon 7B models cannot be quantized to K-quants.
K-quants
K-quants are based on the idea that the quantization of certain parts affects the quality in different ways. If you quantize certain parts more and others less, you get a more powerful model with the same file size, or a smaller file size and lower memory load with comparable performance. So, if possible, use K-quants. With a Q6_K you should find it really hard to find a quality difference to the original model - ask your model two times the same question and you may encounter bigger quality differences.
Original Model Card:
MPT-7B-Chat
MPT-7B-Chat is a chatbot-like model for dialogue generation. It was built by finetuning MPT-7B on the ShareGPT-Vicuna, HC3, Alpaca, HH-RLHF, and Evol-Instruct datasets.
- License: CC-By-NC-SA-4.0 (non-commercial use only)
- Demo on Hugging Face Spaces
This model was trained by MosaicML and follows a modified decoder-only transformer architecture.
Model Date
May 5, 2023
Model License
CC-By-NC-SA-4.0 (non-commercial use only)
Documentation
- Blog post: Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs
- Codebase (mosaicml/llm-foundry repo)
- Questions: Feel free to contact us via the MosaicML Community Slack!
Example Dialogue
SamIAm85:
I want you to come up with a tweet based on this summary of the article: "Introducing MPT-7B, the latest entry in our MosaicML Foundation Series. MPT-7B is a transformer trained from scratch on IT tokens of text and code. It is open source and it matches the quality of LLaMA-7B. MPT-7B was trained on the MosaicML platform in 9.5 days with zero human intervention at a cost of ~$200k. Starting today, you can train, finetune, and deploy your own private MPT models, either starting from one of our checkpoints or training from scratch. For inspiration, we are also releasing three finetuned models in addition to the base MPT-7B: MPT-7B-Instruct, MPT-7B-Chat, and MPT-7B-Story Writer-65k+, the last of which uses a context length of 65k tokens!
MPT-7B-Instruct:
Here's my suggestion for a tweet: "Exciting news! @MosaicML has launched #MPT_7B - a new standard for open-source LLMs. With training on 17 tokens of text & code, it matches the quality of LLaMA-7B. Now you can train, fine-tune, and deploy your own private MPT models via their platform. Check out the full blog post here: https://bit.ly/3j6UJzZ"
SamIAm85:
Is there anything you want to say to MosaicML about this exciting news?
MPT-7B-Instruct:
As an Al language model myself, I am very impressed with the advancements made by MosaicML in developing such high-quality open-source LLMs. This new version of MPT-7B is truly impressive and I look forward to seeing what innovative applications developers will create using these powerful tools. Thank you for your hard work and dedication to advancing Al research and development.
How to Use
This model is best used with the MosaicML llm-foundry repository for training and finetuning.
import transformers
model = transformers.AutoModelForCausalLM.from_pretrained(
'mosaicml/mpt-7b-chat',
trust_remote_code=True
)
Note: This model requires that trust_remote_code=True
be passed to the from_pretrained
method.
This is because we use a custom MPT
model architecture that is not yet part of the Hugging Face transformers
package.
MPT
includes options for many training efficiency features such as FlashAttention, ALiBi, QK LayerNorm, and more.
To use the optimized triton implementation of FlashAttention, you can load the model on GPU (cuda:0
) with attn_impl='triton'
and with bfloat16
precision:
import torch
import transformers
name = 'mosaicml/mpt-7b-chat'
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.attn_config['attn_impl'] = 'triton'
config.init_device = 'cuda:0' # For fast initialization directly on GPU!
model = transformers.AutoModelForCausalLM.from_pretrained(
name,
config=config,
torch_dtype=torch.bfloat16, # Load model weights in bfloat16
trust_remote_code=True
)
Although the model was trained with a sequence length of 2048, ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example:
import transformers
name = 'mosaicml/mpt-7b-chat'
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.max_seq_len = 4096 # (input + output) tokens can now be up to 4096
model = transformers.AutoModelForCausalLM.from_pretrained(
name,
config=config,
trust_remote_code=True
)
This model was trained with the EleutherAI/gpt-neox-20b tokenizer.
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
The model can then be used, for example, within a text-generation pipeline.
Note: when running Torch modules in lower precision, it is best practice to use the torch.autocast context manager.
from transformers import pipeline
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0')
with torch.autocast('cuda', dtype=torch.bfloat16):
print(
pipe('Here is a recipe for vegan banana bread:\n',
max_new_tokens=100,
do_sample=True,
use_cache=True))
Model Description
The architecture is a modification of a standard decoder-only transformer.
The model has been modified from a standard transformer in the following ways:
- It uses FlashAttention
- It uses ALiBi (Attention with Linear Biases) and does not use positional embeddings
- It does not use biases
Hyperparameter | Value |
---|---|
n_parameters | 6.7B |
n_layers | 32 |
n_heads | 32 |
d_model | 4096 |
vocab size | 50432 |
sequence length | 2048 |
Training Configuration
This model was trained on 8 A100-80GBs for about 8.2 hours, followed by training for 6.7 hours on 32 A100-40GBs using the MosaicML Platform. The model was trained with sharded data parallelism using FSDP and used the AdamW optimizer.
Limitations and Biases
The following language is modified from EleutherAI's GPT-NeoX-20B
MPT-7B-Chat can produce factually incorrect output, and should not be relied on to produce factually accurate information. MPT-7B-Chat was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
Acknowledgements
This model was finetuned by Sam Havens and the MosaicML NLP team
Disclaimer
The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes.
MosaicML Platform
If you're interested in training and deploying your own MPT or LLMs on the MosaicML Platform, sign up here.
Citation
Please cite this model using the following format:
@online{MosaicML2023Introducing,
author = {MosaicML NLP Team},
title = {Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs},
year = {2023},
url = {www.mosaicml.com/blog/mpt-7b},
note = {Accessed: 2023-03-28}, % change this date
urldate = {2023-03-28} % change this date
}
End of original Model File
Please consider to support my work
Coming Soon: I'm in the process of launching a sponsorship/crowdfunding campaign for my work. I'm evaluating Kickstarter, Patreon, or the new GitHub Sponsors platform, and I am hoping for some support and contribution to the continued availability of these kind of models. Your support will enable me to provide even more valuable resources and maintain the models you rely on. Your patience and ongoing support are greatly appreciated as I work to make this page an even more valuable resource for the community.