metadata
license: cc-by-4.0
model-index:
- name: piccolo-8x7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 69.62
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/piccolo-8x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.98
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/piccolo-8x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.13
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/piccolo-8x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 64.17
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/piccolo-8x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 79.87
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/piccolo-8x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 72.02
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/piccolo-8x7b
name: Open LLM Leaderboard
Piccolo-8x7b
In loving memory of my dog Klaus (Piccolo)
~ Piccolo (Italian): the little one ~
Based on mlabonne/NeuralBeagle-7b Quants are available here
Code Example
Inference and Evaluation colab available here
from transformers import AutoModelForCausalLM, AutoTokenizer
def generate_response(prompt):
"""
Generate a response from the model based on the input prompt.
Args:
prompt (str): Prompt for the model.
Returns:
str: The generated response from the model.
"""
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
model_id = "macadeliccc/piccolo-8x7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id,load_in_4bit=True)
prompt = "What is the best way to train Cane Corsos?"
print("Response:")
print(generate_response(prompt), "\n")
The model is capable of quality code, math, and logical reasoning. Try whatever questions you think of.
Example output
Evaluations
https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__piccolo-8x7b
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 72.80 |
AI2 Reasoning Challenge (25-Shot) | 69.62 |
HellaSwag (10-Shot) | 86.98 |
MMLU (5-Shot) | 64.13 |
TruthfulQA (0-shot) | 64.17 |
Winogrande (5-shot) | 79.87 |
GSM8k (5-shot) | 72.02 |