Piccolo MoE
Collection
MoEs skilled in math and programming. This is experimentation of my daily driver.
β’
6 items
β’
Updated
In loving memory of my dog Klaus (Piccolo)
~ Piccolo (Italian): the little one ~
Inference and Evaluation colab available here
from transformers import AutoModelForCausalLM, AutoTokenizer
def generate_response(prompt):
"""
Generate a response from the model based on the input prompt.
Args:
prompt (str): Prompt for the model.
Returns:
str: The generated response from the model.
"""
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
model_id = "macadeliccc/piccolo-4x7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id,load_in_4bit=True)
prompt = "What is the best way to train Cane Corsos?"
print("Response:")
print(generate_response(prompt), "\n")
The model is capable of quality code, math, and logical reasoning. Try whatever questions you think of.
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |
---|---|---|---|---|---|---|---|
arc_easy | Yaml | none | 0 | acc | 0.8371 | Β± | 0.0076 |
none | 0 | acc_norm | 0.8064 | Β± | 0.0081 | ||
boolq | Yaml | none | 0 | acc | 0.8685 | Β± | 0.0059 |
hellaswag | Yaml | none | 0 | acc | 0.6687 | Β± | 0.0047 |
none | 0 | acc_norm | 0.8416 | Β± | 0.0036 | ||
openbookqa | Yaml | none | 0 | acc | 0.3580 | Β± | 0.0215 |
none | 0 | acc_norm | 0.4740 | Β± | 0.0224 | ||
piqa | Yaml | none | 0 | acc | 0.8243 | Β± | 0.0089 |
none | 0 | acc_norm | 0.8308 | Β± | 0.0087 | ||
winogrande | Yaml | none | 0 | acc | 0.7609 | Β± | 0.0120 |