|
--- |
|
license: apache-2.0 |
|
base_model: mHossain/ml_sum_v1 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: ml_sum_v2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ml_sum_v2 |
|
|
|
This model is a fine-tuned version of [mHossain/ml_sum_v1](https://huggingface.co/mHossain/ml_sum_v1) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.9401 |
|
- Rouge1: 8.1448 |
|
- Rouge2: 3.3615 |
|
- Rougel: 7.4641 |
|
- Rougelsum: 7.9361 |
|
- Gen Len: 19.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 5000 |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| No log | 1.0 | 312 | 2.1706 | 7.2919 | 2.8117 | 6.7418 | 7.1173 | 19.0 | |
|
| 2.4911 | 2.0 | 625 | 2.1012 | 7.7986 | 3.0952 | 7.1505 | 7.5818 | 19.0 | |
|
| 2.4911 | 3.0 | 937 | 2.0373 | 8.0535 | 3.2228 | 7.3877 | 7.8365 | 19.0 | |
|
| 2.3572 | 4.0 | 1250 | 1.9865 | 8.1591 | 3.31 | 7.4577 | 7.9114 | 19.0 | |
|
| 2.2455 | 4.99 | 1560 | 1.9401 | 8.1448 | 3.3615 | 7.4641 | 7.9361 | 19.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|