Edit model card

Wav2Vec2-Large-XLSR-53-Turkish

Fine-tuned facebook/wav2vec2-large-xlsr-53 in Turkish using Common Voice. When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

Requirements

# requirement packages
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
!pip install jiwer

Prediction

import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset

import numpy as np
import re
import string

import IPython.display as ipd

chars_to_ignore = [
    ",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�",
    "#", "!", "?", "«", "»", "(", ")", "؛", ",", "?", ".", "!", "-", ";", ":", '"', 
    "“", "%", "‘", "�", "–", "…", "_", "”", '“', '„'
]
chars_to_mapping = {
"\u200c": " ", "\u200d": " ", "\u200e": " ", "\u200f": " ", "\ufeff": " ",
}

def multiple_replace(text, chars_to_mapping):
    pattern = "|".join(map(re.escape, chars_to_mapping.keys()))
    return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text))

def remove_special_characters(text, chars_to_ignore_regex):
    text = re.sub(chars_to_ignore_regex, '', text).lower() + " "
    return text

def normalizer(batch, chars_to_ignore, chars_to_mapping):
    chars_to_ignore_regex = f"""[{"".join(chars_to_ignore)}]"""
    text = batch["sentence"].lower().strip()
    
    text = text.replace("\u0307", " ").strip()
    text = multiple_replace(text, chars_to_mapping)
    text = remove_special_characters(text, chars_to_ignore_regex)

    batch["sentence"] = text
    return batch


def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    speech_array = speech_array.squeeze().numpy()
    speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)

    batch["speech"] = speech_array
    return batch


def predict(batch):
    features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    input_values = features.input_values.to(device)
    attention_mask = features.attention_mask.to(device)

    with torch.no_grad():
        logits = model(input_values, attention_mask=attention_mask).logits 
        
    pred_ids = torch.argmax(logits, dim=-1)

    batch["predicted"] = processor.batch_decode(pred_ids)[0]
    return batch


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-turkish")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-turkish").to(device)

dataset = load_dataset("common_voice", "et", split="test[:1%]")
dataset = dataset.map(
    normalizer, 
    fn_kwargs={"chars_to_ignore": chars_to_ignore, "chars_to_mapping": chars_to_mapping},
    remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
)

dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict)

max_items = np.random.randint(0, len(result), 10).tolist()
for i in max_items:
    reference, predicted =  result["sentence"][i], result["predicted"][i]
    print("reference:", reference)
    print("predicted:", predicted)
    print('---')

Output: ```text reference: ülke şu anda iki federasyona üye predicted: ülke şu anda iki federasyona üye

reference: foruma dört yüzde fazla kişi katıldı predicted: soruma dört yüzden fazla kişi katıldı

reference: mobi altmış üç çalışanları da mutsuz predicted: mobia haltmış üç çalışanları da mutsur

reference: kentin mali esnekliğinin düşük olduğu bildirildi predicted: kentin mali esnekleğinin düşük olduğu bildirildi

reference: fouere iki ülkeyi sorunu abartmamaya çağırdı predicted: foor iki ülkeyi soruna abartmamaya çanayordı

reference: o ülkeden herhangi bir tepki geldi mi predicted: o ülkeden herhayın bir tepki geldi mi

reference: bunlara asla sırtımızı dönmeyeceğiz predicted: bunlara asla sırtımızı dönmeyeceğiz

reference: sizi ayakta tutan nedir predicted: sizi ayakta tutan nedir

reference: artık insanlar daha bireysel yaşıyor predicted: artık insanlar daha bir eyselli yaşıyor

reference: her ikisi de diyaloga hazır olduğunu söylüyor predicted: her ikisi de diyaloğa hazır olduğunu söylüyor

reference: merkez bankasının başlıca amacı düşük enflasyon predicted: merkez bankasının başlrıca anatı güşükyen flasyon

reference: firefox predicted: fair foks

reference: ülke halkı çok misafirsever ve dışa dönük predicted: ülke halktı çok isatirtever ve dışa dönük

reference: ancak kamuoyu bu durumu pek de affetmiyor predicted: ancak kamuonyulgukirmu pek deafıf etmiyor

reference: i ki madende iki bin beş yüzden fazla kişi çalışıyor predicted: i ki madende iki bin beş yüzden fazla kişi çalışıyor

reference: sunnyside park dışarıdan oldukça iyi görünüyor predicted: sani sahip park dışarıdan oldukça iyi görünüyor

reference: büyük ödül on beş bin avro predicted: büyük ödül on beş bin avro

reference: köyümdeki camiler depoya dönüştürüldü predicted: küyümdeki camiler depoya dönüştürüldü

reference: maç oldukça diplomatik bir sonuçla birbir bitti predicted: maç oldukça diplomatik bir sonuçla bir birbitti

reference: kuşların ikisi de karantinada öldüler predicted: kuşların ikiste karantinada özdüler



## Evaluation

The model can be evaluated as follows on the Turkish test data of Common Voice.

```python
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset, load_metric

import numpy as np
import re
import string


chars_to_ignore = [
    ",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�",
    "#", "!", "?", "«", "»", "(", ")", "؛", ",", "?", ".", "!", "-", ";", ":", '"', 
    "“", "%", "‘", "�", "–", "…", "_", "”", '“', '„'
]
chars_to_mapping = {
    "\u200c": " ", "\u200d": " ", "\u200e": " ", "\u200f": " ", "\ufeff": " ",
    "\u0307": " "
}

def multiple_replace(text, chars_to_mapping):
    pattern = "|".join(map(re.escape, chars_to_mapping.keys()))
    return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text))

def remove_special_characters(text, chars_to_ignore_regex):
    text = re.sub(chars_to_ignore_regex, '', text).lower() + " "
    return text

def normalizer(batch, chars_to_ignore, chars_to_mapping):
    chars_to_ignore_regex = f"""[{"".join(chars_to_ignore)}]"""
    text = batch["sentence"].lower().strip()
    
    text = text.replace("\u0307", " ").strip()
    text = multiple_replace(text, chars_to_mapping)
    text = remove_special_characters(text, chars_to_ignore_regex)
    text = re.sub(" +", " ", text)
    text = text.strip() + " "

    batch["sentence"] = text
    return batch


def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    speech_array = speech_array.squeeze().numpy()
    speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)

    batch["speech"] = speech_array
    return batch


def predict(batch):
    features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    input_values = features.input_values.to(device)
    attention_mask = features.attention_mask.to(device)

    with torch.no_grad():
        logits = model(input_values, attention_mask=attention_mask).logits 
        
    pred_ids = torch.argmax(logits, dim=-1)

    batch["predicted"] = processor.batch_decode(pred_ids)[0]
    return batch


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-turkish")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-turkish").to(device)

dataset = load_dataset("common_voice", "tr", split="test")
dataset = dataset.map(
    normalizer, 
    fn_kwargs={"chars_to_ignore": chars_to_ignore, "chars_to_mapping": chars_to_mapping},
    remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
)

dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict)

wer = load_metric("wer")

print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["sentence"])))

]

Test Result:

  • WER: 27.51%

Training & Report

The Common Voice train, validation datasets were used for training.

You can see the training states here

The script used for training can be found here

Downloads last month
174
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train m3hrdadfi/wav2vec2-large-xlsr-turkish

Space using m3hrdadfi/wav2vec2-large-xlsr-turkish 1

Evaluation results