mt5-summarize
This model is a fine-tuned version of google/mt5-small on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.1534
- Rouge1: 0.3153
- Rouge2: 0.1594
- Rougel: 0.2511
- Rougelsum: 0.3397
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 90
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
4.3806 | 1.0667 | 100 | 3.4709 | 0.2568 | 0.1258 | 0.2214 | 0.2662 |
3.7757 | 2.1333 | 200 | 3.2899 | 0.2759 | 0.1388 | 0.2381 | 0.2946 |
3.5195 | 3.2 | 300 | 3.1951 | 0.2951 | 0.1523 | 0.2466 | 0.3217 |
3.4319 | 4.2667 | 400 | 3.1715 | 0.2813 | 0.1323 | 0.2331 | 0.3011 |
3.2402 | 5.3333 | 500 | 3.1704 | 0.3058 | 0.1548 | 0.2513 | 0.3366 |
3.2313 | 6.4 | 600 | 3.1657 | 0.3077 | 0.1534 | 0.2461 | 0.3335 |
3.1444 | 7.4667 | 700 | 3.1719 | 0.2957 | 0.1453 | 0.2378 | 0.3191 |
3.116 | 8.5333 | 800 | 3.1639 | 0.3144 | 0.1540 | 0.2501 | 0.3453 |
2.9937 | 9.6 | 900 | 3.1534 | 0.3153 | 0.1594 | 0.2511 | 0.3397 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 1
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.