metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: sentence-transformers/paraphrase-mpnet-base-v2
metrics:
- accuracy
- precision
- recall
- f1
widget:
- text: >-
Ms. Russell's decision to not install flood protection was likely made
after careful consideration and evaluation of the situation.
- text: >-
I cannot determine an appropriate level of punishment as I lack context
about the situation and Ms. Russel's responsibilities.
- text: >-
The lack of installation is a serious oversight, but Ms. Russell may have
had valid reasons or unforeseen circumstances that contributed to the
delay.
- text: >-
As an AI, I cannot form opinions or emotions, but considering the
statement's context, it implies Ms. Russel should have had knowledge of
potential flood risks for this year.
- text: >-
I lack information about Ms. Russell and the potential for a flood to
determine the extent of my agreement with the statement.
pipeline_tag: text-classification
inference: true
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.95
name: Accuracy
- type: precision
value: 0.95
name: Precision
- type: recall
value: 0.95
name: Recall
- type: f1
value: 0.95
name: F1
SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
no_info |
|
info |
|
Evaluation
Metrics
Label | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|
all | 0.95 | 0.95 | 0.95 | 0.95 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("I cannot determine an appropriate level of punishment as I lack context about the situation and Ms. Russel's responsibilities.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 20.0312 | 36 |
Label | Training Sample Count |
---|---|
info | 16 |
no_info | 16 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0125 | 1 | 0.2422 | - |
0.625 | 50 | 0.0018 | - |
Framework Versions
- Python: 3.11.7
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.40.1
- PyTorch: 2.3.0
- Datasets: 2.19.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}