audio_pronunciation / README.md
lpcortez's picture
End of training
f882a45 verified
|
raw
history blame
1.84 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base-960h
tags:
  - generated_from_trainer
datasets:
  - arrow
metrics:
  - accuracy
model-index:
  - name: audio_pronunciation
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: arrow
          type: arrow
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.38756536897152816

audio_pronunciation

This model is a fine-tuned version of facebook/wav2vec2-base-960h on the arrow dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0923
  • Accuracy: 0.3876

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 216 1.0932 0.3876
No log 2.0 432 1.0923 0.3876
1.0936 3.0 648 1.0923 0.3876

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1