Edit model card

drone-DinoVdeau-produttoria-binary is a fine-tuned version of drone-DinoVdeau-produttoria-binary-large-2024_11_04-batch-size64_freeze. It achieves the following results on the test set:

  • Loss: 0.2920
  • F1 Micro: 0.8387
  • F1 Macro: 0.6349
  • Accuracy: 0.2681
Class F1 per class
Acropore_branched 0.8103
Acropore_digitised 0.4910
Acropore_tabular 0.3804
Algae 0.9090
Dead_coral 0.7329
Fish 0.6809
Millepore 0.2665
No_acropore_encrusting 0.5949
No_acropore_massive 0.7760
No_acropore_sub_massive 0.6423
Rock 0.9539
Rubble 0.9035
Sand 0.9058

Model description

drone-DinoVdeau-produttoria-binary is a model built on top of drone-DinoVdeau-produttoria-binary-large-2024_11_04-batch-size64_freeze model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.

The source code for training the model can be found in this Git repository.


Intended uses & limitations

You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.


Training and evaluation data

Details on the number of images for each class are given in the following table:

Class train test val Total
Acropore_branched 1483 532 519 2534
Acropore_digitised 1085 379 354 1818
Acropore_tabular 486 173 181 840
Algae 9163 3119 3145 15427
Dead_coral 3710 1265 1254 6229
Fish 1456 523 515 2494
Millepore 731 273 297 1301
No_acropore_encrusting 1980 747 745 3472
No_acropore_massive 4438 1625 1617 7680
No_acropore_sub_massive 3036 1122 1091 5249
Rock 10216 3437 3446 17099
Rubble 9345 3093 3120 15558
Sand 9240 3135 3129 15504

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • Number of Epochs: 93.0
  • Learning Rate: 0.001
  • Train Batch Size: 64
  • Eval Batch Size: 64
  • Optimizer: Adam
  • LR Scheduler Type: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
  • Freeze Encoder: Yes
  • Data Augmentation: Yes

Data Augmentation

Data were augmented using the following transformations :

Train Transforms

  • PreProcess: No additional parameters
  • Resize: probability=1.00
  • RandomHorizontalFlip: probability=0.25
  • RandomVerticalFlip: probability=0.25
  • ColorJiggle: probability=0.25
  • RandomPerspective: probability=0.25
  • Normalize: probability=1.00

Val Transforms

  • PreProcess: No additional parameters
  • Resize: probability=1.00
  • Normalize: probability=1.00

Training results

Epoch Validation Loss Accuracy F1 Macro F1 Micro Learning Rate
1 0.33133190870285034 0.2465 0.8232 0.6028 0.001
2 0.32479074597358704 0.2574 0.8257 0.5804 0.001
3 0.3155537247657776 0.2504 0.8294 0.5895 0.001
4 0.31338146328926086 0.2637 0.8299 0.5890 0.001
5 0.31261566281318665 0.2551 0.8303 0.5945 0.001
6 0.3106238543987274 0.2551 0.8277 0.5928 0.001
7 0.3110489547252655 0.2553 0.8345 0.6182 0.001
8 0.3142373561859131 0.2566 0.8315 0.6097 0.001
9 0.3147599399089813 0.2340 0.8318 0.6138 0.001
10 0.3089006543159485 0.2634 0.8340 0.6072 0.001
11 0.3095955550670624 0.2587 0.8332 0.5998 0.001
12 0.30922698974609375 0.2525 0.8331 0.6163 0.001
13 0.3101893365383148 0.2491 0.8316 0.6016 0.001
14 0.30971381068229675 0.2639 0.8288 0.5952 0.001
15 0.30827441811561584 0.2462 0.8338 0.6153 0.001
16 0.3080792725086212 0.2634 0.8348 0.6102 0.001
17 0.3121964633464813 0.2342 0.8313 0.6059 0.001
18 0.3083283007144928 0.2566 0.8293 0.5870 0.001
19 0.3106550872325897 0.2504 0.8363 0.6266 0.001
20 0.306607723236084 0.2634 0.8337 0.6034 0.001
21 0.3118128776550293 0.2592 0.8271 0.5862 0.001
22 0.30495893955230713 0.2665 0.8329 0.5988 0.001
23 0.30966898798942566 0.2553 0.8340 0.6189 0.001
24 0.3067616820335388 0.2587 0.8318 0.6039 0.001
25 N/A 0.0000 0.0000 0.0000 0.001
26 0.30948761105537415 0.2684 0.8310 0.5952 0.001
27 0.30627554655075073 0.2517 0.8346 0.6156 0.001
28 0.31095221638679504 0.2559 0.8264 0.6011 0.001
29 0.3020830452442169 0.2712 0.8345 0.6083 0.0001
30 0.30176734924316406 0.2744 0.8351 0.6046 0.0001
31 0.3010377883911133 0.2751 0.8376 0.6161 0.0001
32 0.3006710708141327 0.2767 0.8372 0.6172 0.0001
33 0.30090999603271484 0.2710 0.8375 0.6230 0.0001
34 0.29988643527030945 0.2746 0.8379 0.6223 0.0001
35 0.2998106777667999 0.2762 0.8377 0.6148 0.0001
36 0.3001900315284729 0.2783 0.8370 0.6114 0.0001
37 0.299510657787323 0.2770 0.8370 0.6122 0.0001
38 0.2991965413093567 0.2772 0.8377 0.6142 0.0001
39 0.2990879416465759 0.2725 0.8383 0.6138 0.0001
40 0.2994089722633362 0.2759 0.8373 0.6189 0.0001
41 0.29888105392456055 0.2770 0.8396 0.6285 0.0001
42 0.29893118143081665 0.2725 0.8384 0.6237 0.0001
43 0.2987787425518036 0.2762 0.8379 0.6187 0.0001
44 0.2980958819389343 0.2764 0.8382 0.6218 0.0001
45 0.29851531982421875 0.2668 0.8385 0.6295 0.0001
46 0.297795832157135 0.2770 0.8388 0.6196 0.0001
47 0.29809537529945374 0.2741 0.8384 0.6250 0.0001
48 0.29759711027145386 0.2809 0.8387 0.6230 0.0001
49 0.2976347804069519 0.2791 0.8386 0.6252 0.0001
50 N/A 0.0000 0.0000 0.0000 0.0001
51 0.2974720299243927 0.2757 0.8399 0.6319 0.0001
52 0.2965853810310364 0.2733 0.8394 0.6275 0.0001
53 0.2971484959125519 0.2801 0.8385 0.6244 0.0001
54 0.2965540885925293 0.2744 0.8392 0.6268 0.0001
55 0.2974574863910675 0.2762 0.8382 0.6246 0.0001
56 0.2963787019252777 0.2793 0.8392 0.6285 0.0001
57 0.29714566469192505 0.2764 0.8391 0.6324 0.0001
58 0.2968769073486328 0.2738 0.8397 0.6347 0.0001
59 0.29710978269577026 0.2749 0.8404 0.6320 0.0001
60 0.2966577410697937 0.2723 0.8377 0.6251 0.0001
61 0.29699769616127014 0.2757 0.8383 0.6253 0.0001
62 0.29695647954940796 0.2731 0.8385 0.6263 0.0001
63 0.2960326671600342 0.2736 0.8394 0.6280 1e-05
64 0.29593583941459656 0.2723 0.8396 0.6326 1e-05
65 0.29625141620635986 0.2712 0.8407 0.6350 1e-05
66 0.2958442270755768 0.2738 0.8390 0.6261 1e-05
67 0.2959185838699341 0.2767 0.8395 0.6301 1e-05
68 0.2957761883735657 0.2723 0.8398 0.6392 1e-05
69 0.29576200246810913 0.2720 0.8395 0.6347 1e-05
70 0.295784056186676 0.2751 0.8395 0.6321 1e-05
71 0.29544582962989807 0.2757 0.8398 0.6346 1e-05
72 0.29554447531700134 0.2736 0.8398 0.6381 1e-05
73 0.29577216506004333 0.2746 0.8397 0.6336 1e-05
74 0.2956525683403015 0.2751 0.8401 0.6362 1e-05
75 N/A 0.0000 0.0000 0.0000 1e-05
76 0.2954920828342438 0.2731 0.8396 0.6358 1e-05
77 0.29537785053253174 0.2762 0.8396 0.6331 1e-05
78 0.29544633626937866 0.2731 0.8398 0.6383 1e-05
79 0.29545679688453674 0.2738 0.8402 0.6394 1e-05
80 0.2953413426876068 0.2699 0.8403 0.6379 1e-05
81 0.29545214772224426 0.2770 0.8403 0.6335 1e-05
82 0.2955772876739502 0.2733 0.8408 0.6396 1e-05
83 0.2952810227870941 0.2744 0.8392 0.6358 1e-05
84 0.29596611857414246 0.2728 0.8396 0.6398 1e-05
85 0.29555922746658325 0.2751 0.8392 0.6343 1e-05
86 0.29549410939216614 0.2736 0.8402 0.6371 1e-05
87 0.29544368386268616 0.2749 0.8404 0.6396 1e-05
88 0.29540950059890747 0.2746 0.8405 0.6406 1e-05
89 0.295379102230072 0.2731 0.8400 0.6393 1e-05
90 0.29556041955947876 0.2749 0.8402 0.6371 1.0000000000000002e-06
91 0.29565492272377014 0.2710 0.8401 0.6422 1.0000000000000002e-06
92 0.2954220473766327 0.2738 0.8404 0.6401 1.0000000000000002e-06
93 0.29537004232406616 0.2746 0.8398 0.6368 1.0000000000000002e-06

Framework Versions

  • Transformers: 4.41.0
  • Pytorch: 2.5.0+cu124
  • Datasets: 3.0.2
  • Tokenizers: 0.19.1
Downloads last month
8
Safetensors
Model size
306M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .