Edit model card

DinoVd'eau is a fine-tuned version of facebook/dinov2-large. It achieves the following results on the test set:

  • Explained variance: 0.4014
  • Loss: 0.3578
  • MAE: 0.1288
  • MSE: 0.0378
  • R2: 0.4008
  • RMSE: 0.1943

Model description

DinoVd'eau is a model built on top of dinov2 model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.

The source code for training the model can be found in this Git repository.


Intended uses & limitations

You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.


Training and evaluation data

Details on the number of images for each class are given in the following table:

Class train val test Total
Acropore_branched 1956 651 652 3259
Acropore_digitised 1717 576 576 2869
Acropore_tabular 1105 384 379 1868
Algae 11092 3677 3674 18443
Dead_coral 5888 1952 1959 9799
Fish 3453 1157 1157 5767
Millepore 1760 690 693 3143
No_acropore_encrusting 2707 974 999 4680
No_acropore_massive 6487 2158 2167 10812
No_acropore_sub_massive 5015 1776 1776 8567
Rock 11176 3725 3725 18626
Rubble 10689 3563 3563 17815
Sand 11168 3723 3723 18614

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • Number of Epochs: 100
  • Learning Rate: 0.001
  • Train Batch Size: 64
  • Eval Batch Size: 64
  • Optimizer: Adam
  • LR Scheduler Type: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
  • Freeze Encoder: Yes
  • Data Augmentation: Yes

Data Augmentation

Data were augmented using the following transformations :

Train Transforms

  • PreProcess: No additional parameters
  • Resize: probability=1.00
  • RandomHorizontalFlip: probability=0.25
  • RandomVerticalFlip: probability=0.25
  • ColorJiggle: probability=0.25
  • RandomPerspective: probability=0.25
  • Normalize: probability=1.00

Val Transforms

  • PreProcess: No additional parameters
  • Resize: probability=1.00
  • Normalize: probability=1.00

Training results

Epoch Explained Variance Validation Loss MAE MSE R2 RMSE Learning Rate
1 0.28 0.386 0.157 0.046 0.262 0.215 0.001
2 0.321 0.376 0.147 0.044 0.312 0.21 0.001
3 0.339 0.372 0.145 0.043 0.332 0.206 0.001
4 0.357 0.367 0.14 0.041 0.355 0.202 0.001
5 0.349 0.369 0.139 0.042 0.343 0.205 0.001
6 0.359 0.367 0.141 0.041 0.355 0.202 0.001
7 0.35 0.368 0.141 0.042 0.346 0.204 0.001
8 0.364 0.366 0.139 0.041 0.36 0.201 0.001
9 0.361 0.366 0.134 0.041 0.355 0.202 0.001
10 0.356 0.367 0.138 0.041 0.353 0.202 0.001
11 0.357 0.367 0.137 0.041 0.355 0.202 0.001
12 0.36 0.366 0.14 0.041 0.359 0.202 0.001
13 0.37 0.363 0.136 0.04 0.37 0.199 0.001
14 0.363 0.367 0.142 0.041 0.356 0.202 0.001
15 0.364 0.364 0.14 0.04 0.362 0.201 0.001
16 0.372 0.364 0.136 0.04 0.369 0.2 0.001
17 0.373 0.367 0.141 0.041 0.362 0.202 0.001
18 0.371 0.363 0.137 0.04 0.37 0.2 0.001
19 0.373 0.363 0.135 0.04 0.372 0.199 0.001
20 0.362 0.365 0.135 0.041 0.359 0.201 0.001
21 0.363 0.367 0.136 0.041 0.358 0.202 0.001
22 0.37 0.365 0.137 0.04 0.368 0.2 0.001
23 0.374 0.363 0.136 0.04 0.37 0.2 0.001
24 0.376 0.363 0.139 0.04 0.373 0.199 0.001
25 0.373 0.364 0.138 0.04 0.37 0.2 0.001
26 0.384 0.361 0.133 0.039 0.382 0.198 0.0001
27 0.388 0.36 0.135 0.039 0.386 0.197 0.0001
28 0.39 0.359 0.134 0.038 0.389 0.196 0.0001
29 0.391 0.36 0.135 0.038 0.389 0.196 0.0001
30 0.389 0.36 0.135 0.039 0.388 0.197 0.0001
31 0.392 0.359 0.132 0.038 0.391 0.196 0.0001
32 0.393 0.358 0.133 0.038 0.393 0.196 0.0001
33 0.395 0.358 0.131 0.038 0.395 0.195 0.0001
34 0.397 0.358 0.132 0.038 0.395 0.195 0.0001
35 0.395 0.358 0.132 0.038 0.395 0.195 0.0001
36 0.39 0.359 0.135 0.039 0.39 0.196 0.0001
37 0.397 0.358 0.131 0.038 0.397 0.195 0.0001
38 0.394 0.358 0.133 0.038 0.392 0.196 0.0001
39 0.397 0.358 0.131 0.038 0.396 0.195 0.0001
40 0.4 0.357 0.133 0.038 0.398 0.195 0.0001
41 0.399 0.358 0.132 0.038 0.396 0.195 0.0001
42 0.399 0.357 0.133 0.038 0.397 0.195 0.0001
43 0.402 0.357 0.133 0.038 0.401 0.194 0.0001
44 0.403 0.357 0.131 0.038 0.401 0.194 0.0001
45 0.403 0.357 0.132 0.038 0.402 0.194 0.0001
46 0.401 0.357 0.13 0.038 0.4 0.194 0.0001
47 0.4 0.357 0.129 0.038 0.397 0.195 0.0001
48 0.404 0.356 0.13 0.038 0.402 0.194 0.0001
49 0.402 0.357 0.131 0.038 0.401 0.194 0.0001
50 0.401 0.357 0.132 0.038 0.4 0.194 0.0001
51 0.402 0.358 0.134 0.038 0.396 0.195 0.0001
52 0.405 0.356 0.131 0.037 0.404 0.194 0.0001
53 0.405 0.357 0.131 0.038 0.403 0.194 0.0001
54 0.402 0.357 0.132 0.038 0.401 0.194 0.0001
55 0.405 0.356 0.129 0.038 0.403 0.194 0.0001
56 0.405 0.357 0.128 0.038 0.402 0.194 0.0001
57 0.405 0.356 0.129 0.038 0.403 0.194 0.0001
58 0.406 0.356 0.13 0.038 0.404 0.194 0.0001
59 0.406 0.356 0.129 0.037 0.405 0.194 1e-05
60 0.408 0.356 0.13 0.037 0.406 0.193 1e-05
61 0.407 0.355 0.13 0.037 0.407 0.193 1e-05
62 0.406 0.356 0.132 0.038 0.404 0.194 1e-05
63 0.409 0.356 0.129 0.037 0.408 0.193 1e-05
64 0.409 0.355 0.13 0.037 0.408 0.193 1e-05
65 0.406 0.356 0.131 0.038 0.405 0.194 1e-05
66 0.409 0.355 0.13 0.037 0.408 0.193 1e-05
67 0.408 0.355 0.13 0.037 0.408 0.193 1e-05
68 0.407 0.356 0.13 0.037 0.406 0.193 1e-05
69 0.409 0.355 0.13 0.037 0.408 0.193 1e-05
70 0.409 0.356 0.131 0.037 0.407 0.193 1e-05
71 0.407 0.356 0.13 0.037 0.407 0.193 1e-05
72 0.408 0.356 0.13 0.037 0.407 0.193 1e-05
73 0.409 0.355 0.13 0.037 0.408 0.193 1.0000000000000002e-06
74 0.409 0.355 0.128 0.037 0.409 0.193 1.0000000000000002e-06
75 0.406 0.356 0.13 0.037 0.405 0.194 1.0000000000000002e-06
76 0.408 0.356 0.128 0.037 0.406 0.193 1.0000000000000002e-06
77 0.405 0.356 0.132 0.038 0.404 0.194 1.0000000000000002e-06
78 0.409 0.355 0.131 0.037 0.409 0.193 1.0000000000000002e-06
79 0.402 0.357 0.131 0.038 0.4 0.195 1.0000000000000002e-06
80 0.406 0.356 0.131 0.037 0.405 0.194 1.0000000000000002e-06
81 0.409 0.356 0.131 0.037 0.408 0.193 1.0000000000000002e-07
82 0.409 0.356 0.131 0.037 0.407 0.193 1.0000000000000002e-07
83 0.41 0.356 0.13 0.037 0.407 0.193 1.0000000000000002e-07
84 0.408 0.356 0.131 0.037 0.406 0.193 1.0000000000000002e-07

CO2 Emissions

The estimated CO2 emissions for training this model are documented below:

  • Emissions: 0.22861184690098074 grams of CO2
  • Source: Code Carbon
  • Training Type: fine-tuning
  • Geographical Location: Brest, France
  • Hardware Used: NVIDIA Tesla V100 PCIe 32 Go

Framework Versions

  • Transformers: 4.41.1
  • Pytorch: 2.3.0+cu121
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1
Downloads last month
0
Safetensors
Model size
306M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for lombardata/drone-DinoVdeau-large-2024_09_17-batch-size64_epochs100_freeze

Finetuned
(10)
this model