File size: 1,168 Bytes
aaf3578 f51f39d 1e4fd71 aaf3578 049f708 aaf3578 902a281 aaf3578 0642c11 902a281 aaf3578 0642c11 aaf3578 d6a40db 0642c11 902a281 0642c11 d6a40db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
---
license: apache-2.0
inference: false
base_model: llmware/bling-tiny-llama-v0
base_model_relation: quantized
tags: [green, llmware-rag, p1, ov]
---
# bling-tiny-llama-ov
**bling-tiny-llama-ov** is a very small, very fast fact-based question-answering model, designed for retrieval augmented generation (RAG) with complex business documents, quantized and packaged in OpenVino int4 for AI PCs using Intel GPU, CPU and NPU.
This model is one of the smallest and fastest in the series. For higher accuracy, look at larger models in the BLING/DRAGON series.
### Model Description
- **Developed by:** llmware
- **Model type:** tinyllama
- **Parameters:** 1.1 billion
- **Quantization:** int4
- **Model Parent:** [llmware/bling-tiny-llama-v0](https://www.huggingface.co/llmware/bling-tiny-llama-v0)
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Uses:** Fact-based question-answering, RAG
- **RAG Benchmark Accuracy Score:** 86.5
## Model Card Contact
[llmware on github](https://www.github.com/llmware-ai/llmware)
[llmware on hf](https://www.huggingface.co/llmware)
[llmware website](https://www.llmware.ai)
|