doberst commited on
Commit
902a281
1 Parent(s): 0642c11

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -6,9 +6,9 @@ tags: [green, llmware-rag, p1, ov]
6
 
7
  # bling-tiny-llama-ov
8
 
9
- **bling-tiny-llama-ov** is a very small, very fast fact-based question-answering model, optimized for complex business documents, and quantized and packaged in OpenVino int4 for AI PCs using Intel GPU, CPU and NPU.
10
 
11
- This model is one of the smallest and fastest in the series. For higher accuracy, look at larger models in the series, e.g., llmware/bling-phi-3-ov.
12
 
13
  ### Model Description
14
 
@@ -16,7 +16,7 @@ This model is one of the smallest and fastest in the series. For higher accurac
16
  - **Model type:** tinyllama
17
  - **Parameters:** 1.1 billion
18
  - **Quantization:** int4
19
- - **Model Parent:** llmware/bling-tiny-llama-v0
20
  - **Language(s) (NLP):** English
21
  - **License:** Apache 2.0
22
  - **Uses:** Fact-based question-answering, RAG
@@ -29,6 +29,6 @@ Looking for AI PC solutions, contact us at [llmware](https://www.llmware.ai)
29
 
30
 
31
  ## Model Card Contact
32
-
33
  [llmware on hf](https://www.huggingface.co/llmware)
34
  [llmware website](https://www.llmware.ai)
 
6
 
7
  # bling-tiny-llama-ov
8
 
9
+ **bling-tiny-llama-ov** is a very small, very fast fact-based question-answering model, designed for retrieval augmented generation (RAG) with complex business documents, and quantized and packaged in OpenVino int4 for AI PCs using Intel GPU, CPU and NPU.
10
 
11
+ This model is one of the smallest and fastest in the series. For higher accuracy, look at larger models in the BLING/DRAGON series.
12
 
13
  ### Model Description
14
 
 
16
  - **Model type:** tinyllama
17
  - **Parameters:** 1.1 billion
18
  - **Quantization:** int4
19
+ - **Model Parent:** [llmware/bling-tiny-llama-v0](https://www.huggingface.co/llmware/bling-tiny-llama-v0)
20
  - **Language(s) (NLP):** English
21
  - **License:** Apache 2.0
22
  - **Uses:** Fact-based question-answering, RAG
 
29
 
30
 
31
  ## Model Card Contact
32
+ [llmware on github](https://www.github.com/llmware-ai/llmware)
33
  [llmware on hf](https://www.huggingface.co/llmware)
34
  [llmware website](https://www.llmware.ai)