bling-answer-tool / README.md
doberst's picture
Update README.md
940d772 verified
---
license: apache-2.0
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
**bling-answer-tool** is a quantized version of BLING Tiny-Llama 1B, with 4_K_M GGUF quantization, providing a very fast, very small inference implementation for use on CPUs.
[**bling-tiny-llama**](https://huggingface.co/llmware/bling-tiny-llama-v0) is a fact-based question-answering model, optimized for complex business documents.
To pull the model via API:
from huggingface_hub import snapshot_download
snapshot_download("llmware/bling-answer-tool", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)
Load in your favorite GGUF inference engine, or try with llmware as follows:
from llmware.models import ModelCatalog
model = ModelCatalog().load_model("bling-answer-tool")
response = model.inference(query, add_context=text_sample)
Note: please review [**config.json**](https://huggingface.co/llmware/bling-answer-tool/blob/main/config.json) in the repository for prompt wrapping information, details on the model, and full test set.
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** llmware
- **Model type:** GGUF
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Quantized from model:** [llmware/bling-tiny-llama](https://huggingface.co/llmware/bling-tiny-llama-v0/)
## Model Card Contact
Darren Oberst & llmware team