See axolotl config
axolotl version: 0.4.0
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
model_type: AutoModelForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
chat_template: inst
datasets:
- path: ./data/raw_format/tool_used_training.jsonl
type: sharegpt
conversation: mistral
- path: ./data/raw_format/tool_not_used_training.jsonl
type: sharegpt
conversation: mistral
- path: ./data/raw_format/no_tools_training.jsonl
type: sharegpt
conversation: mistral
- path: ./data/akoksal_lon_form.jsonl
type: sharegpt
conversation: mistral
- path: ./data/dolly.jsonl
type: sharegpt
conversation: mistral
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./mixtral-lora-2-epochs-r64
adapter: qlora
lora_model_dir:
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out:
hub_model_id: liuylhf/mixtral-lora
hub_strategy: end
# lora_target_linear: true
model_config:
output_router_logits: true
lora_target_modules:
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: function-call
wandb_name: mixtral-instruct-raw-data-v3
wandb_log_model: end
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.001
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
# loss_watchdog_threshold: 5.0
# loss_watchdog_patience: 3
warmup_steps: 10
# evals_per_epoch: 20
eval_steps: 0.05
save_steps: 0.1
eval_table_size:
eval_max_new_tokens: 256
# saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0
mixtral-lora
This model is a fine-tuned version of mistralai/Mixtral-8x7B-Instruct-v0.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4469
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.3559 | 0.0 | 1 | 3.6627 |
0.548 | 0.1 | 43 | 0.5124 |
0.2747 | 0.2 | 86 | 0.4845 |
0.4202 | 0.31 | 129 | 0.4760 |
0.4662 | 0.41 | 172 | 0.4690 |
0.4605 | 0.51 | 215 | 0.4640 |
0.2909 | 0.61 | 258 | 0.4620 |
0.3941 | 0.71 | 301 | 0.4600 |
0.4185 | 0.82 | 344 | 0.4573 |
0.395 | 0.92 | 387 | 0.4558 |
0.2725 | 1.0 | 430 | 0.4534 |
0.2789 | 1.1 | 473 | 0.4525 |
0.4126 | 1.21 | 516 | 0.4511 |
0.3277 | 1.31 | 559 | 0.4506 |
0.3591 | 1.41 | 602 | 0.4493 |
0.3665 | 1.51 | 645 | 0.4487 |
0.5551 | 1.62 | 688 | 0.4471 |
0.3363 | 1.72 | 731 | 0.4473 |
0.3117 | 1.82 | 774 | 0.4471 |
0.496 | 1.92 | 817 | 0.4469 |
Framework versions
- PEFT 0.8.2
- Transformers 4.39.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.0
- Downloads last month
- 5
Model tree for liuylhf/mixtral-lora
Base model
mistralai/Mixtral-8x7B-v0.1
Finetuned
mistralai/Mixtral-8x7B-Instruct-v0.1