liqi03's picture
Upload tokenizer
e7902de verified
metadata
base_model: openai/whisper-large-v3
datasets:
  - google/fleurs
language:
  - pt
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Large V3 pt Fleurs - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: google/fleurs
          config: pt_br
          split: None
          args: 'config: pt split: test'
        metrics:
          - type: wer
            value: 257.5243288985003
            name: Wer

Whisper Large V3 pt Fleurs - Chee Li

This model is a fine-tuned version of openai/whisper-large-v3 on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1532
  • Wer: 257.5243

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 150
  • training_steps: 1500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0151 2.5126 500 0.1223 181.9849
0.0011 5.0251 1000 0.1471 239.4293
0.0005 7.5377 1500 0.1532 257.5243

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1