liqi03's picture
Upload tokenizer
b57185b verified
metadata
base_model: openai/whisper-large-v3
datasets:
  - google/fleurs
language:
  - pl
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Large V3 pl Fleurs - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: google/fleurs
          config: pl_pl
          split: None
          args: 'config: pl split: test'
        metrics:
          - type: wer
            value: 439.37657254682694
            name: Wer

Whisper Large V3 pl Fleurs - Chee Li

This model is a fine-tuned version of openai/whisper-large-v3 on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1447
  • Wer: 439.3766

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0041 5.0251 1000 0.1241 51.9639
0.0004 10.0503 2000 0.1403 517.6754
0.0001 15.0754 3000 0.1425 411.9164
0.0001 20.1005 4000 0.1447 439.3766

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1