metadata
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- argilla/CapybaraHermes-2.5-Mistral-7B
- MediaTek-Research/Breeze-7B-Instruct-v0_1
base_model:
- argilla/CapybaraHermes-2.5-Mistral-7B
- MediaTek-Research/Breeze-7B-Instruct-v0_1
試製-暮光-7B
試製-暮光-7B 是用LazyMergekit融合以下模型生成的:
這是一個實驗模型,目的是爲了檢驗套用在不同語言上的高品質模型調教是否能夠轉移(此模型爲英文到中文)。
shizhi-twilight-7B
shizhi-twilight-7B is a merge of the following models using LazyMergekit:
This is an experiment product on checking whether high quality fine-tuning on one language (English) could be transferred to another language (Mandarin) leveraging Slerp merge method.
🧩 Configuration
slices:
- sources:
- model: MediaTek-Research/Breeze-7B-Instruct-v0_1
layer_range: [0, 32]
- model: argilla/CapybaraHermes-2.5-Mistral-7B
layer_range: [0, 32]
merge_method: slerp
base_model: MediaTek-Research/Breeze-7B-Instruct-v0_1
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "lipcut/shizhi-twilight-7B"
messages = [{"role": "user", "content": "什麼是大型語言模型?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])