|
--- |
|
license: apache-2.0 |
|
base_model: google/long-t5-tglobal-xl |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- learn3r/summ_screen_memsum_oracle |
|
model-index: |
|
- name: longt5_xl_sfd_memsum_30 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# longt5_xl_sfd_memsum_30 |
|
|
|
This model is a fine-tuned version of [google/long-t5-tglobal-xl](https://huggingface.co/google/long-t5-tglobal-xl) on the learn3r/summ_screen_memsum_oracle dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 5.1322 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 32 |
|
- total_train_batch_size: 256 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant |
|
- num_epochs: 30.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 2.6697 | 0.97 | 14 | 2.4168 | |
|
| 2.2272 | 1.95 | 28 | 2.2644 | |
|
| 1.9024 | 2.99 | 43 | 2.2556 | |
|
| 1.6554 | 3.97 | 57 | 2.4007 | |
|
| 1.3619 | 4.94 | 71 | 2.4233 | |
|
| 1.1577 | 5.98 | 86 | 2.6797 | |
|
| 0.9584 | 6.96 | 100 | 2.8449 | |
|
| 0.7197 | 8.0 | 115 | 3.0255 | |
|
| 0.5756 | 8.97 | 129 | 3.1467 | |
|
| 0.485 | 9.95 | 143 | 3.2976 | |
|
| 0.4027 | 10.99 | 158 | 3.8111 | |
|
| 0.2938 | 11.97 | 172 | 3.7330 | |
|
| 0.2665 | 12.94 | 186 | 4.1417 | |
|
| 0.2019 | 13.98 | 201 | 4.0316 | |
|
| 0.1706 | 14.96 | 215 | 4.1357 | |
|
| 0.1418 | 16.0 | 230 | 4.1022 | |
|
| 0.1286 | 16.97 | 244 | 4.1198 | |
|
| 0.1022 | 17.95 | 258 | 4.1862 | |
|
| 0.1122 | 18.99 | 273 | 4.6386 | |
|
| 0.093 | 19.97 | 287 | 4.6829 | |
|
| 0.0783 | 20.94 | 301 | 4.6637 | |
|
| 0.0698 | 21.98 | 316 | 4.7190 | |
|
| 0.0688 | 22.96 | 330 | 5.0200 | |
|
| 0.0633 | 24.0 | 345 | 4.7576 | |
|
| 0.0609 | 24.97 | 359 | 4.7805 | |
|
| 0.0553 | 25.95 | 373 | 4.7338 | |
|
| 0.0503 | 26.99 | 388 | 5.1409 | |
|
| 0.0471 | 27.97 | 402 | 5.1463 | |
|
| 0.0472 | 28.94 | 416 | 5.1636 | |
|
| 0.0376 | 29.22 | 420 | 5.1322 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|