Edit model card

SentenceTransformer based on Snowflake/snowflake-arctic-embed-m

This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Snowflake/snowflake-arctic-embed-m
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ldldld/snowflake-arctic-embed-m-finetuned")
# Run inference
sentences = [
    "What are the implications of the digital divide highlighted in Andrew Kenney's article regarding unemployment benefits?",
    'https://bipartisanpolicy.org/blog/the-low-down-on-ballot-curing/\n101. Andrew Kenney. \'I\'m shocked that they need to have a smartphone\': System for unemployment\nbenefits exposes digital divide. USA Today. May 2, 2021.\nhttps://www.usatoday.com/story/tech/news/2021/05/02/unemployment-benefits-system-leaving\xad\npeople-behind/4915248001/\n102. Allie Gross. UIA lawsuit shows how the state criminalizes the unemployed. Detroit Metro-Times.\nSep. 18, 2015.\nhttps://www.metrotimes.com/news/uia-lawsuit-shows-how-the-state-criminalizes-the\xad\nunemployed-2369412\n103. Maia Szalavitz. The Pain Was Unbearable. So Why Did Doctors Turn Her Away? Wired. Aug. 11,\n2021. https://www.wired.com/story/opioid-drug-addiction-algorithm-chronic-pain/\n104. Spencer Soper. Fired by Bot at Amazon: "It\'s You Against the Machine". Bloomberg, Jun. 28, 2021.\nhttps://www.bloomberg.com/news/features/2021-06-28/fired-by-bot-amazon-turns-to-machine\xad\nmanagers-and-workers-are-losing-out',
    '5. Environmental Impacts: Impacts due to high compute resource utilization in training or \noperating GAI models, and related outcomes that may adversely impact ecosystems.  \n6. Harmful Bias or Homogenization: Amplification and exacerbation of historical, societal, and \nsystemic biases; performance disparities8 between sub-groups or languages, possibly due to \nnon-representative training data, that result in discrimination, amplification of biases, or \nincorrect presumptions about performance; undesired homogeneity that skews system or model \noutputs, which may be erroneous, lead to ill-founded decision-making, or amplify harmful \nbiases.  \n7. Human-AI Configuration: Arrangements of or interactions between a human and an AI system \nwhich can result in the human inappropriately anthropomorphizing GAI systems or experiencing \nalgorithmic aversion, automation bias, over-reliance, or emotional entanglement with GAI \nsystems.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.73
cosine_accuracy@3 0.9
cosine_accuracy@5 0.935
cosine_accuracy@10 0.96
cosine_precision@1 0.73
cosine_precision@3 0.3
cosine_precision@5 0.187
cosine_precision@10 0.096
cosine_recall@1 0.73
cosine_recall@3 0.9
cosine_recall@5 0.935
cosine_recall@10 0.96
cosine_ndcg@10 0.8512
cosine_mrr@10 0.8155
cosine_map@100 0.8172
dot_accuracy@1 0.73
dot_accuracy@3 0.9
dot_accuracy@5 0.935
dot_accuracy@10 0.96
dot_precision@1 0.73
dot_precision@3 0.3
dot_precision@5 0.187
dot_precision@10 0.096
dot_recall@1 0.73
dot_recall@3 0.9
dot_recall@5 0.935
dot_recall@10 0.96
dot_ndcg@10 0.8512
dot_mrr@10 0.8155
dot_map@100 0.8172

Training Details

Training Dataset

Unnamed Dataset

  • Size: 600 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 600 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 12 tokens
    • mean: 20.66 tokens
    • max: 34 tokens
    • min: 21 tokens
    • mean: 165.88 tokens
    • max: 512 tokens
  • Samples:
    sentence_0 sentence_1
    What is the main purpose of the "Blueprint for an AI Bill of Rights" as indicated in the context? BLUEPRINT FOR AN
    AI BILL OF
    RIGHTS
    MAKING AUTOMATED
    SYSTEMS WORK FOR
    THE AMERICAN PEOPLE
    OCTOBER 2022
    When was the "Blueprint for an AI Bill of Rights" created? BLUEPRINT FOR AN
    AI BILL OF
    RIGHTS
    MAKING AUTOMATED
    SYSTEMS WORK FOR
    THE AMERICAN PEOPLE
    OCTOBER 2022
    What was the purpose of the Blueprint for an AI Bill of Rights published by the White House Office of Science and Technology Policy in October 2022? About this Document
    The Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People was
    published by the White House Office of Science and Technology Policy in October 2022. This framework was
    released one year after OSTP announced the launch of a process to develop “a bill of rights for an AI-powered
    world.” Its release follows a year of public engagement to inform this initiative. The framework is available
    online at: https://www.whitehouse.gov/ostp/ai-bill-of-rights
    About the Office of Science and Technology Policy
    The Office of Science and Technology Policy (OSTP) was established by the National Science and Technology
    Policy, Organization, and Priorities Act of 1976 to provide the President and others within the Executive Office
    of the President with advice on the scientific, engineering, and technological aspects of the economy, national
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 20
  • per_device_eval_batch_size: 20
  • num_train_epochs: 5
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 20
  • per_device_eval_batch_size: 20
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step cosine_map@100
1.0 30 0.7953
1.6667 50 0.8326
2.0 60 0.8277
3.0 90 0.8250
3.3333 100 0.8284
4.0 120 0.8200
5.0 150 0.8172

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.1.1
  • Transformers: 4.44.2
  • PyTorch: 2.4.1+cu121
  • Accelerate: 0.34.2
  • Datasets: 3.0.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
0
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldldld/snowflake-arctic-embed-m-finetuned

Finetuned
(29)
this model

Evaluation results