kwang123's picture
kwang123/deberta-large-ReqORNot
d215a5a verified
metadata
license: mit
base_model: microsoft/deberta-v3-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: deberta-large-ReqORNot
    results: []

deberta-large-ReqORNot

This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5297
  • Accuracy: 0.9135
  • Weighted precision: 0.9135
  • Weighted recall: 0.9135
  • Weighted f1: 0.9134
  • Macro precision: 0.9135
  • Macro recall: 0.9128
  • Macro f1: 0.9131

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 3
  • eval_batch_size: 3
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Weighted precision Weighted recall Weighted f1 Macro precision Macro recall Macro f1
0.4826 1.0 1896 0.4286 0.9020 0.9020 0.9020 0.9019 0.9018 0.9014 0.9016
0.3429 2.0 3792 0.4274 0.9077 0.9091 0.9077 0.9078 0.9076 0.9089 0.9076
0.1299 3.0 5688 0.5297 0.9135 0.9135 0.9135 0.9134 0.9135 0.9128 0.9131

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2