kurosekurose's picture
update model card README.md
1f5b79b
|
raw
history blame
2.34 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: wav2vec2-base-EMOPIA
    results: []

wav2vec2-base-EMOPIA

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9346
  • Accuracy: 0.7000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 12
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3867 0.99 58 1.3518 0.3286
1.2842 1.99 116 1.1872 0.4571
1.0725 2.99 174 1.0476 0.5571
0.9343 3.99 232 0.9677 0.5714
0.8053 4.99 290 0.9525 0.6143
0.7895 5.99 348 0.7735 0.6857
0.6867 6.99 406 0.8556 0.6429
0.6218 7.99 464 0.8454 0.6714
0.558 8.99 522 0.8405 0.6571
0.5033 9.99 580 1.0190 0.6286
0.4403 10.99 638 0.8249 0.7000
0.3995 11.99 696 0.8997 0.7143
0.3534 12.99 754 0.9177 0.7000
0.3023 13.99 812 0.9544 0.6571
0.2752 14.99 870 0.9346 0.7000

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.10.1+cu102
  • Datasets 2.4.0
  • Tokenizers 0.12.1