|
# I-BERT base model |
|
|
|
This model, `ibert-roberta-base`, is an integer-only quantized version of [RoBERTa](https://arxiv.org/abs/1907.11692), and was introduced in [this papaer](https://arxiv.org/abs/2101.01321). |
|
I-BERT stores all parameters with INT8 representation, and carries out the entire inference using integer-only arithmetic. |
|
In particular, I-BERT replaces all floating point operations in the Transformer architectures (e.g., MatMul, GELU, Softmax, and LayerNorm) with closely approximating integer operations. |
|
This can result in upto 4x inference speed up as compared to floating point counterpart when tested on an Nvidia T4 GPU. |
|
The best model parameters searched via quantization-aware finetuning can be then exported (e.g., to TensorRT) for integer-only deployment of the model. |
|
|
|
|
|
## Finetuning Procedure |
|
|
|
Finetuning of I-BERT consists of 3 stages: (1) Full-precision finetuning from the pretrained model on a down-stream task, (2) model quantization, and (3) integer-only finetuning (i.e., quantization-aware training) of the quantized model. |
|
|
|
|
|
### Full-precision finetuning |
|
|
|
Full-precision finetuning of I-BERT is similar to RoBERTa finetuning. |
|
For instance, you can run the following command to finetune on the [MRPC](https://www.microsoft.com/en-us/download/details.aspx?id=52398) text classification task. |
|
|
|
``` |
|
python examples/text-classification/run_glue.py \ |
|
--model_name_or_path kssteven/ibert-roberta-base \ |
|
--task_name MRPC \ |
|
--do_eval \ |
|
--do_train \ |
|
--evaluation_strategy epoch \ |
|
--max_seq_length 128 \ |
|
--per_device_train_batch_size 32 \ |
|
--save_steps 115 \ |
|
--learning_rate 2e-5 \ |
|
--num_train_epochs 10 \ |
|
--output_dir $OUTPUT_DIR |
|
``` |
|
|
|
### Model Quantization |
|
|
|
Once you are done with full-precision finetuning, open up `config.json` in your checkpoint directory and set the `quantize` attribute as `true`. |
|
|
|
``` |
|
{ |
|
"_name_or_path": "kssteven/ibert-roberta-base", |
|
"architectures": [ |
|
"IBertForSequenceClassification" |
|
], |
|
"attention_probs_dropout_prob": 0.1, |
|
"bos_token_id": 0, |
|
"eos_token_id": 2, |
|
"finetuning_task": "mrpc", |
|
"force_dequant": "none", |
|
"hidden_act": "gelu", |
|
"hidden_dropout_prob": 0.1, |
|
"hidden_size": 768, |
|
"initializer_range": 0.02, |
|
"intermediate_size": 3072, |
|
"layer_norm_eps": 1e-05, |
|
"max_position_embeddings": 514, |
|
"model_type": "ibert", |
|
"num_attention_heads": 12, |
|
"num_hidden_layers": 12, |
|
"pad_token_id": 1, |
|
"position_embedding_type": "absolute", |
|
"quant_mode": true, |
|
"tokenizer_class": "RobertaTokenizer", |
|
"transformers_version": "4.4.0.dev0", |
|
"type_vocab_size": 1, |
|
"vocab_size": 50265 |
|
} |
|
``` |
|
|
|
Then, your model will automatically run as the integer-only mode when you load the checkpoint. |
|
Also, make sure to delete `optimizer.pt`, `scheduler.pt` and `trainer_state.json` in the same directory. |
|
Otherwise, HF will not reset the optimizer, scheduler, or trainer state for the following integer-only finetuning. |
|
|
|
|
|
### Integer-only finetuning (Quantization-aware training) |
|
|
|
Finally, you will be able to run integer-only finetuning simply by loading the checkpoint file you modified. |
|
Note that the only difference in the example command below is `model_name_or_path`. |
|
|
|
``` |
|
python examples/text-classification/run_glue.py \ |
|
--model_name_or_path $CHECKPOINT_DIR |
|
--task_name MRPC \ |
|
--do_eval \ |
|
--do_train \ |
|
--evaluation_strategy epoch \ |
|
--max_seq_length 128 \ |
|
--per_device_train_batch_size 32 \ |
|
--save_steps 115 \ |
|
--learning_rate 1e-6 \ |
|
--num_train_epochs 10 \ |
|
--output_dir $OUTPUT_DIR |
|
``` |
|
|
|
|
|
## Citation info |
|
|
|
If you use I-BERT, please cite [our papaer](https://arxiv.org/abs/2101.01321). |
|
``` |
|
@article{kim2021bert, |
|
title={I-BERT: Integer-only BERT Quantization}, |
|
author={Kim, Sehoon and Gholami, Amir and Yao, Zhewei and Mahoney, Michael W and Keutzer, Kurt}, |
|
journal={arXiv preprint arXiv:2101.01321}, |
|
year={2021} |
|
} |
|
|