krishnagarg09's picture
Add gitignore and model card
2732c44
|
raw
history blame
2.17 kB
# Model Card for krishnagarg09/stance-detection-semeval2016
## Model Description
The goal is to identify the stance (AGAINST, NONE, FAVOR) of a user towards a given target.
Sample:
```
Input: Lord, You are my Hope! In You I will always trust.
Target: Atheism
Stance: AGAINST
```
The model is pretrained on SemEval2016-Task6 stance detection dataset. The dataset is available at https://huggingface.co/datasets/krishnagarg09/SemEval2016Task6.
Ref: https://aclanthology.org/S16-1003/ for more details about the dataset
- **Developed by:** Krishna Garg
- **Shared by [Optional]:** Krishna Garg
- **Model type:** Language model
- **Language(s) (NLP):** en
- **License:** mit
- **Resources for more information:**
- [Associated Paper](https://aclanthology.org/S16-1003/)
## Direct Use
```
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from datasets import load_dataset
# load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("krishnagarg09/stance-detection-semeval2016")
model = AutoModelForSequenceClassification.from_pretrained("krishnagarg09/stance-detection-semeval2016")
# load dataset
dataset = load_dataset("krishnagarg09/SemEval2016Task6")
# prepare input
text = dataset['test']['Tweet']
encoded_input = tokenizer(text, return_tensors='pt', add_special_tokens = True, max_length=128, padding=True, truncation=True)
# forward pass
output = model(**encoded_input)
```
## Dataset
The dataset is available at https://huggingface.co/datasets/krishnagarg09/SemEval2016Task6.
```
dataset = load_dataset("krishnagarg09/SemEval2016Task6")
```
## Training Details
optimizer: Adam
lr: 2e-5
loss: crossentropy
epochs: 5 (best weights chosen over validation)
batch_size: 32
### Preprocessing
Text lowercased, `#semst` tags removed, `p.OPT.URL,p.OPT.EMOJI,p.OPT.RESERVED` removed using `tweet-preprocessor` package, normalization done using `emnlp_dict.txt` and `noslang_data.json`
## Evaluation
Evaluation for Stance Detection is done only for 2/3 labels, i.e., FAVOR and AGAINST.
```
Precision: 62.69
Recall: 69.43
F1: 65.56
```
## Hardware
Nvidia RTX A5000 24GB
## Model Card Contact
[email protected]