File size: 1,571 Bytes
9442566 1ab8d81 9442566 1ab8d81 9442566 1ab8d81 5595090 1ab8d81 5595090 1ab8d81 5595090 1ab8d81 5595090 1ab8d81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
base_model:
- meta-llama/Llama-3.1-8B-Instruct
datasets:
- rojas-diego/Apple-MLX-QA
language:
- en
library_name: transformers
license: mit
pipeline_tag: question-answering
---
# Meta-Llama-3.1-8B-Instruct-Apple-MLX
## Overview
This model is a merge of the [MLX QLORA Adapter](https://huggingface.co/koyeb/Meta-Llama-3.1-8B-Instruct-Apple-MLX-Adapter) and the base model [Meta LLaMa 3.1 8B Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) model, trained to answer questions and provide guidance on Apple's latest machine learning framework, MLX. The fine-tuning was done using the LORA (Low-Rank Adaptation) method on a custom dataset of question-answer pairs derived from the MLX documentation.
## Dataset
Fine-tuned on a single epoch of [Apple MLX QA](https://huggingface.co/datasets/koyeb/Apple-MLX-QA).
## Installation
To use the model, you need to install the required dependencies:
```bash
pip install peft transformers jinja2==3.1.0
```
## Usage
Here鈥檚 a sample code snippet to load and interact with the model:
```python
import transformers
import torch
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
outputs = pipeline(
messages,
max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])
``` |