rojasdiego
commited on
Commit
•
1ab8d81
1
Parent(s):
54386eb
Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,77 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
library_name: transformers
|
3 |
-
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
##
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
base_model:
|
3 |
+
- meta-llama/Llama-3.1-8B-Instruct
|
4 |
+
datasets:
|
5 |
+
- rojas-diego/Apple-MLX-QA
|
6 |
+
language:
|
7 |
+
- en
|
8 |
library_name: transformers
|
9 |
+
license: mit
|
10 |
+
pipeline_tag: question-answering
|
11 |
---
|
12 |
|
13 |
+
# Meta-Llama-3.1-8B-Instruct-Apple-MLX
|
14 |
+
|
15 |
+
## Overview
|
16 |
+
|
17 |
+
This model is a merge of the [MLX QLORA Adapter](https://huggingface.co/koyeb/Meta-Llama-3.1-8B-Instruct-Apple-MLX-Adapter) and the base model [Meta LLaMa 3.1 8B Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) model, trained to answer questions and provide guidance on Apple's latest machine learning framework, MLX. The fine-tuning was done using the LORA (Low-Rank Adaptation) method on a custom dataset of question-answer pairs derived from the MLX documentation.
|
18 |
+
|
19 |
+
## Dataset
|
20 |
+
|
21 |
+
Fine-tuned on a single epoch of [Apple MLX QA](https://huggingface.co/datasets/koyeb/Apple-MLX-QA).
|
22 |
+
|
23 |
+
## Installation
|
24 |
+
|
25 |
+
To use the model, you need to install the required dependencies:
|
26 |
+
|
27 |
+
```bash
|
28 |
+
pip install peft transformers jinja2==3.1.0
|
29 |
+
```
|
30 |
+
|
31 |
+
## Usage
|
32 |
+
|
33 |
+
Here’s a sample code snippet to load and interact with the model:
|
34 |
+
|
35 |
+
```python
|
36 |
+
import torch
|
37 |
+
from peft import PeftModel
|
38 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
39 |
+
|
40 |
+
# Load the base model and tokenizer
|
41 |
+
model = AutoModelForCausalLM.from_pretrained(
|
42 |
+
"meta-llama/Llama-3.1-8B-Instruct", torch_dtype=torch.bfloat16
|
43 |
+
)
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-Instruct")
|
45 |
+
|
46 |
+
# Load the fine-tuned model using LORA
|
47 |
+
model = PeftModel.from_pretrained(
|
48 |
+
model,
|
49 |
+
"rojas-diego/Meta-Llama-3.1-8B-Instruct-Apple-MLX",
|
50 |
+
).to("cuda")
|
51 |
+
|
52 |
+
# Define input using a chat template with a system prompt and user query
|
53 |
+
ids = tokenizer.apply_chat_template(
|
54 |
+
[
|
55 |
+
{
|
56 |
+
"role": "system",
|
57 |
+
"content": "You are a helpful AI coding assistant with expert knowledge of Apple's latest machine learning framework: MLX. You can help answer questions about MLX, provide code snippets, and help debug code.",
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"role": "user",
|
61 |
+
"content": "How do you transpose a matrix in MLX?",
|
62 |
+
},
|
63 |
+
],
|
64 |
+
tokenize=True,
|
65 |
+
add_generation_prompt=True,
|
66 |
+
return_tensors="pt",
|
67 |
+
).to("cuda")
|
68 |
+
|
69 |
+
# Generate and print the response
|
70 |
+
print(
|
71 |
+
tokenizer.decode(
|
72 |
+
model.generate(input_ids=ids, max_new_tokens=256, temperature=0.5).tolist()[0][
|
73 |
+
len(ids) :
|
74 |
+
]
|
75 |
+
)
|
76 |
+
)
|
77 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|