Edit model card

SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model trained on the konsman/setfit-messages-optimized dataset that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A MultiOutputClassifier instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Evaluation

Metrics

Label F1 Accuracy
all 0.6897 0.3404

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("konsman/setfit-messages-multilabel-example")
# Run inference
preds = model("Sorry forgot to say that unfortunately after this problem that made me let sports and with the anxiety meds . I am now 83 kg")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 5 110.2344 469

Training Hyperparameters

  • batch_size: (8, 8)
  • num_epochs: (2, 2)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 5
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0031 1 0.3209 -
0.1562 50 0.1823 -
0.3125 100 0.1003 -
0.4688 150 0.1774 -
0.625 200 0.0832 -
0.7812 250 0.0828 -
0.9375 300 0.0721 -
1.0938 350 0.1331 -
1.25 400 0.1215 -
1.4062 450 0.1494 -
1.5625 500 0.0444 -
1.7188 550 0.0688 -
1.875 600 0.1033 -
0.0125 1 0.0508 -
0.625 50 0.0793 -
1.25 100 0.081 -
1.875 150 0.1367 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.2
  • Sentence Transformers: 2.2.2
  • Transformers: 4.35.2
  • PyTorch: 2.1.0+cu121
  • Datasets: 2.16.1
  • Tokenizers: 0.15.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
6
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for konsman/setfit-messages-multilabel-example

Finetuned
(247)
this model

Evaluation results