metadata
language:
- en
- hi
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
datasets:
- yahma/alpaca-cleaned
- ravithejads/samvaad-hi-filtered
- HydraIndicLM/hindi_alpaca_dolly_67k
TinyLlama-1.1B-Hinglish-LORA-v1.0 model
- Developed by: Kiran Kunapuli
- License: apache-2.0
- Finetuned from model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
- Model config:
model = FastLanguageModel.get_peft_model( model, r = 64, target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj",], lora_alpha = 128, lora_dropout = 0, bias = "none", use_gradient_checkpointing = True, random_state = 42, use_rslora = True, loftq_config = None, )
- Training parameters:
trainer = SFTTrainer( model = model, tokenizer = tokenizer, train_dataset = dataset, dataset_text_field = "text", max_seq_length = max_seq_length, dataset_num_proc = 2, packing = True, args = TrainingArguments( per_device_train_batch_size = 12, gradient_accumulation_steps = 16, warmup_ratio = 0.1, num_train_epochs = 1, learning_rate = 2e-4, fp16 = not torch.cuda.is_bf16_supported(), bf16 = torch.cuda.is_bf16_supported(), logging_steps = 1, optim = "paged_adamw_32bit", weight_decay = 0.001, lr_scheduler_type = "cosine", seed = 42, output_dir = "outputs", report_to = "wandb", ), )
- Training details:
==((====))== Unsloth - 2x faster free finetuning | Num GPUs = 1 \\ /| Num examples = 15,464 | Num Epochs = 1 O^O/ \_/ \ Batch size per device = 12 | Gradient Accumulation steps = 16 \ / Total batch size = 192 | Total steps = 80 "-____-" Number of trainable parameters = 50,462,720 GPU = NVIDIA GeForce RTX 3090. Max memory = 24.0 GB. Total time taken for 1 epoch - 2h:35m:28s 9443.5288 seconds used for training. 157.39 minutes used for training. Peak reserved memory = 17.641 GB. Peak reserved memory for training = 15.344 GB. Peak reserved memory % of max memory = 73.504 %. Peak reserved memory for training % of max memory = 63.933 %.
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
[NOTE] TinyLlama's internal maximum sequence length is 2048. We use RoPE Scaling to extend it to 4096 with Unsloth!