wav2vec2-large-xls-r-300m-Urdu
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9889
- Wer: 0.5607
- Cer: 0.2370
Evaluation Commands
- To evaluate on
mozilla-foundation/common_voice_8_0
with split test
python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-300m-Urdu --dataset mozilla-foundation/common_voice_8_0 --config ur --split test
Inference With LM
from datasets import load_dataset, Audio
from transformers import pipeline
model = "kingabzpro/wav2vec2-large-xls-r-300m-Urdu"
data = load_dataset("mozilla-foundation/common_voice_8_0",
"ur",
split="test",
streaming=True,
use_auth_token=True)
sample_iter = iter(data.cast_column("path",
Audio(sampling_rate=16_000)))
sample = next(sample_iter)
asr = pipeline("automatic-speech-recognition", model=model)
prediction = asr(sample["path"]["array"],
chunk_length_s=5,
stride_length_s=1)
prediction
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 200
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Wer |
Cer |
3.6398 |
30.77 |
400 |
3.3517 |
1.0 |
1.0 |
2.9225 |
61.54 |
800 |
2.5123 |
1.0 |
0.8310 |
1.2568 |
92.31 |
1200 |
0.9699 |
0.6273 |
0.2575 |
0.8974 |
123.08 |
1600 |
0.9715 |
0.5888 |
0.2457 |
0.7151 |
153.85 |
2000 |
0.9984 |
0.5588 |
0.2353 |
0.6416 |
184.62 |
2400 |
0.9889 |
0.5607 |
0.2370 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
Eval results on Common Voice 8 "test" (WER):
Without LM |
With LM (run ./eval.py ) |
52.03 |
39.89 |