BioBERT_JNLPBA_NER / README.md
judithrosell's picture
End of training
673a6eb
metadata
base_model: dmis-lab/biobert-v1.1
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: BioBERT_JNLPBA_NER
    results: []

BioBERT_JNLPBA_NER

This model is a fine-tuned version of dmis-lab/biobert-v1.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1450
  • Precision: 0.9613
  • Recall: 0.9549
  • F1: 0.9581
  • Accuracy: 0.9516

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2743 1.0 582 0.1504 0.9575 0.9536 0.9556 0.9494
0.1418 2.0 1164 0.1473 0.9624 0.9532 0.9578 0.9510
0.1247 3.0 1746 0.1450 0.9613 0.9549 0.9581 0.9516

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.0
  • Tokenizers 0.15.0