metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: train
split: train
args: train
metrics:
- name: Accuracy
type: accuracy
value: 0.83
distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.6180
- Accuracy: 0.83
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 7
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.6805 | 1.0 | 225 | 1.4984 | 0.64 |
0.8767 | 2.0 | 450 | 1.0174 | 0.67 |
0.9691 | 3.0 | 675 | 0.8688 | 0.73 |
0.6252 | 4.0 | 900 | 0.7695 | 0.77 |
0.2577 | 5.0 | 1125 | 0.6340 | 0.81 |
0.076 | 6.0 | 1350 | 0.6358 | 0.8 |
0.1941 | 7.0 | 1575 | 0.6180 | 0.83 |
Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.1
- Tokenizers 0.13.3