|
--- |
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- FelixChao/WestSeverus-7B-DPO-v2 |
|
- jsfs11/WestOrcaNeuralMarco-DPO-v2-DARETIES-7B |
|
- mlabonne/Daredevil-7B |
|
base_model: |
|
- FelixChao/WestSeverus-7B-DPO-v2 |
|
- jsfs11/WestOrcaNeuralMarco-DPO-v2-DARETIES-7B |
|
- mlabonne/Daredevil-7B |
|
--- |
|
|
|
# WONMSeverusDevilv2-TIES |
|
|
|
WONMSeverusDevilv2-TIES is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [FelixChao/WestSeverus-7B-DPO-v2](https://huggingface.co/FelixChao/WestSeverus-7B-DPO-v2) |
|
* [jsfs11/WestOrcaNeuralMarco-DPO-v2-DARETIES-7B](https://huggingface.co/jsfs11/WestOrcaNeuralMarco-DPO-v2-DARETIES-7B) |
|
* [mlabonne/Daredevil-7B](https://huggingface.co/mlabonne/Daredevil-7B) |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
models: |
|
- model: FelixChao/WestSeverus-7B-DPO-v2 |
|
parameters: |
|
density: [1, 0.7, 0.1] |
|
weight: [0, 0.3, 0.7, 1] |
|
- model: jsfs11/WestOrcaNeuralMarco-DPO-v2-DARETIES-7B |
|
parameters: |
|
density: [1, 0.7, 0.3] |
|
weight: [0, 0.25, 0.5, 1] |
|
- model: mlabonne/Daredevil-7B |
|
parameters: |
|
density: 0.33 |
|
weight: |
|
- filter: mlp |
|
value: [0.35, 0.65] |
|
- value: 0 |
|
merge_method: ties |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
parameters: |
|
int8_mask: true |
|
normalize: true |
|
t: |
|
- filter: lm_head |
|
value: [0.55] |
|
- filter: embed_tokens |
|
value: [0.7] |
|
- filter: self_attn |
|
value: [0.65, 0.35] |
|
- filter: mlp |
|
value: [0.35, 0.65] |
|
- filter: layernorm |
|
value: [0.4, 0.6] |
|
- filter: modelnorm |
|
value: [0.6] |
|
- value: 0.5 # fallback for rest of tensors |
|
dtype: bfloat16 |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "jsfs11/WONMSeverusDevilv2-TIES" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |