jsfs11's picture
Update README.md
6977d63 verified
metadata
license: apache-2.0
tags:
  - moe
  - frankenmoe
  - merge
  - mergekit
  - lazymergekit
  - jsfs11/RandomMergeNoNormWEIGHTED-7B-DARETIES
  - senseable/WestLake-7B-v2
  - mlabonne/OmniBeagle-7B
  - vanillaOVO/supermario_v3
base_model:
  - jsfs11/RandomMergeNoNormWEIGHTED-7B-DARETIES
  - senseable/WestLake-7B-v2
  - mlabonne/OmniBeagle-7B
  - vanillaOVO/supermario_v3
model-index:
  - name: MixtureofMerges-MoE-4x7b-v3
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 74.4
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jsfs11/MixtureofMerges-MoE-4x7b-v3
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 88.62
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jsfs11/MixtureofMerges-MoE-4x7b-v3
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 64.82
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jsfs11/MixtureofMerges-MoE-4x7b-v3
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 70.78
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jsfs11/MixtureofMerges-MoE-4x7b-v3
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 85
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jsfs11/MixtureofMerges-MoE-4x7b-v3
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 68.23
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jsfs11/MixtureofMerges-MoE-4x7b-v3
          name: Open LLM Leaderboard

MixtureofMerges-MoE-4x7b-v3

MixtureofMerges-MoE-4x7b-v3 is a Mixure of Experts (MoE) made with the following models using LazyMergekit:

🧩 Configuration

base_model: senseable/WestLake-7B-v2
gate_mode: hidden
dtype: bfloat16
experts:
  - source_model: jsfs11/RandomMergeNoNormWEIGHTED-7B-DARETIES
    positive_prompts:
      - "Answer this question from the ARC (Argument Reasoning Comprehension)."
      - "Use common sense and logical reasoning skills."
    negative_prompts:
      - "nonsense"
      - "irrational"
      - "math"
      - "code"
  - source_model: senseable/WestLake-7B-v2
    positive_prompts:
      - "Answer this question from the Winogrande test."
      - "Use advanced knowledge of culture and humanity"
    negative_prompts:
      - "ignorance"
      - "uninformed"
      - "creativity"
  - source_model: mlabonne/OmniBeagle-7B
    positive_prompts:
      - "Calculate the answer to this math problem"
      - "My mathematical capabilities are strong, allowing me to handle complex mathematical queries"
      - "solve for"
    negative_prompts:
      - "incorrect"
      - "inaccurate"
      - "creativity"
  - source_model: vanillaOVO/supermario_v3
    positive_prompts:
      - "Predict the most plausible continuation for this scenario."
      - "Demonstrate understanding of everyday commonsense in your response."
      - "Use contextual clues to determine the most likely outcome."
      - "Apply logical reasoning to complete the given narrative."
      - "Infer the most realistic action or event that follows."
    negative_prompts:
      - "guesswork"
      - "irrelevant information"
      - "contradictory response"
      - "illogical conclusion"
      - "ignoring context"

💻 Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "jsfs11/MixtureofMerges-MoE-4x7b-v3"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 75.31
AI2 Reasoning Challenge (25-Shot) 74.40
HellaSwag (10-Shot) 88.62
MMLU (5-Shot) 64.82
TruthfulQA (0-shot) 70.78
Winogrande (5-shot) 85.00
GSM8k (5-shot) 68.23