jq's picture
whisper-large-v2-multilingual
3c6c6c9 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
  - generated_from_trainer
datasets:
  - generator
model-index:
  - name: whisper-large-v2-multilingual
    results: []

whisper-large-v2-multilingual

This model is a fine-tuned version of openai/whisper-large-v2 on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3502
  • Wer Eng: 0.01
  • Wer Lug: 0.106
  • Wer Ach: 0.241
  • Wer Lgg: 0.361
  • Wer Teo: 0.327
  • Wer Nyn: 0.387
  • Wer Mean: 0.239
  • Cer Eng: 0.004
  • Cer Lug: 0.029
  • Cer Ach: 0.064
  • Cer Lgg: 0.118
  • Cer Teo: 0.145
  • Cer Nyn: 0.125
  • Cer Mean: 0.081

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Eng Wer Lug Wer Ach Wer Lgg Wer Teo Wer Nyn Wer Mean Cer Eng Cer Lug Cer Ach Cer Lgg Cer Teo Cer Nyn Cer Mean
1.0754 0.1 200 0.6042 0.031 0.267 0.428 0.481 0.615 0.712 0.422 0.017 0.053 0.121 0.147 0.242 0.201 0.13
0.5269 1.0001 400 0.4731 0.018 0.176 0.34 0.422 0.45 0.531 0.323 0.008 0.04 0.093 0.126 0.174 0.156 0.099
0.4203 1.1001 600 0.4230 0.018 0.199 0.319 0.416 0.418 0.482 0.309 0.007 0.06 0.094 0.122 0.163 0.146 0.099
0.3851 2.0002 800 0.3871 0.014 0.116 0.271 0.374 0.443 0.454 0.279 0.006 0.03 0.073 0.11 0.19 0.137 0.091
0.3241 2.1002 1000 0.3716 0.015 0.12 0.271 0.392 0.397 0.416 0.269 0.006 0.03 0.077 0.133 0.166 0.127 0.09
0.3161 3.0004 1200 0.3584 0.021 0.121 0.269 0.429 0.36 0.38 0.263 0.008 0.032 0.071 0.154 0.16 0.121 0.091
0.2764 3.1004 1400 0.3546 0.012 0.116 0.254 0.376 0.348 0.403 0.251 0.004 0.03 0.073 0.123 0.155 0.125 0.085
0.2692 4.0005 1600 0.3487 0.011 0.107 0.248 0.352 0.336 0.377 0.238 0.004 0.029 0.067 0.102 0.15 0.123 0.079
0.2427 4.1005 1800 0.3535 0.01 0.113 0.24 0.384 0.329 0.387 0.244 0.004 0.03 0.066 0.122 0.145 0.125 0.082
0.2413 5.0006 2000 0.3502 0.01 0.106 0.241 0.361 0.327 0.387 0.239 0.004 0.029 0.064 0.118 0.145 0.125 0.081

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.2.1
  • Datasets 2.21.0
  • Tokenizers 0.19.1