jpino's picture
update model card README.md
7d03f3f
|
raw
history blame
2.39 kB
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - data_registros_layoutv3
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-registros_v2
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: data_registros_layoutv3
          type: data_registros_layoutv3
          config: default
          split: test
          args: default
        metrics:
          - name: Precision
            type: precision
            value: 0.860632183908046
          - name: Recall
            type: recall
            value: 0.9374021909233177
          - name: F1
            type: f1
            value: 0.8973782771535581
          - name: Accuracy
            type: accuracy
            value: 0.9816688664026983

layoutlmv3-finetuned-registros_v2

This model is a fine-tuned version of microsoft/layoutlmv3-base on the data_registros_layoutv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1473
  • Precision: 0.8606
  • Recall: 0.9374
  • F1: 0.8974
  • Accuracy: 0.9817

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 10.87 250 0.4204 0.4257 0.4351 0.4303 0.9104
0.6077 21.74 500 0.2246 0.7957 0.8654 0.8291 0.9683
0.6077 32.61 750 0.1636 0.8438 0.9218 0.8811 0.9765
0.1638 43.48 1000 0.1473 0.8606 0.9374 0.8974 0.9817

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3