Ulysses-HIRS Relevance Feedback
Collection
26 items
•
Updated
This is a sentence-transformers model finetuned from raquelsilveira/legalbertpt_fp. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("josedossantos/urf-txtIndexacao-legalbertpt")
# Run inference
sentences = [
'Regulamentação, profissão, designer de interiores.',
'Regulamentação profissional, Influenciador digital, criação, geração, Conteúdo digital, Rede social, Mídia social, atribuição, deveres.',
'Proibição, nomeação, homem, Cargo em comissão, Administração federal, condenação, crime, violência contra mulher. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
sentence_0
, sentence_1
, and label
sentence_0 | sentence_1 | label | |
---|---|---|---|
type | string | string | int |
details |
|
|
|
sentence_0 | sentence_1 | label |
---|---|---|
Alteração, Lei de Benefícios da Previdência Social, criação, disciplinamento, auxílio-cuidador, segurado, Regime Geral de Previdência Social (RGPS), familiar, exercício, atividade, cuidador de deficientes. |
Alteração, Estatuto do Idoso, requisito, exercício profissional, cuidador de idosos. _Poder público, estímulo, adoção, idoso, campanha educativa. |
1 |
Equiparação, doença, Lúpus Eritematoso Sistêmico, deficiência física, deficiência intelectual, efeito jurídico. |
Criação, Política Nacional de Conscientização e Orientação sobre LES, combate, doença grave, campanha educativa, tratamento médico, informações, coleta, dados, portador, doença, pesquisa científica, garantia, acesso, medicamentos, inclusão, cosméticos, bloqueador solar, proteção, radiação ultravioleta, pele. |
0 |
Alteração, Lei de Isenção do IPI para Compra de Automóveis, critério, isenção tributária, Imposto sobre Produtos Industrializados (IPI), aquisição, Automóvel, motorista, Transporte individual, transporte de passageiro, Motorista de aplicativo, benefício fiscal, tributação. |
Alteração, Lei de Isenção do IPI para Compra de Automóveis, isenção, Imposto sobre Produtos Industrializados (IPI), motorista de aplicativo, aquisição, veículo de passageiro, tributação. |
1 |
ContrastiveLoss
with these parameters:{
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
"margin": 0.5,
"size_average": true
}
per_device_train_batch_size
: 2per_device_eval_batch_size
: 2num_train_epochs
: 1multi_dataset_batch_sampler
: round_robinoverwrite_output_dir
: Falsedo_predict
: Falseprediction_loss_only
: Trueper_device_train_batch_size
: 2per_device_eval_batch_size
: 2per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falsefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
: auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robinEpoch | Step | Training Loss |
---|---|---|
0.0912 | 500 | 0.0278 |
0.1824 | 1000 | 0.0242 |
0.2737 | 1500 | 0.0226 |
0.3649 | 2000 | 0.0201 |
0.4561 | 2500 | 0.0189 |
0.5473 | 3000 | 0.0165 |
0.6386 | 3500 | 0.0148 |
0.7298 | 4000 | 0.0135 |
0.8210 | 4500 | 0.0122 |
0.9122 | 5000 | 0.0128 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
Base model
raquelsilveira/legalbertpt_fp