|
--- |
|
license: mit |
|
base_model: microsoft/speecht5_tts |
|
tags: |
|
- generated_from_trainer |
|
- text-to-speech |
|
datasets: |
|
- voxpopuli |
|
model-index: |
|
- name: speecht5_finetuned_voxpopuli_nl |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# speecht5_finetuned_voxpopuli_nl |
|
|
|
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the italian section of voxpopuli dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4896 |
|
|
|
## Model description |
|
|
|
This model do text to speeche task in italian language |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
Example: |
|
|
|
|
|
from transformers import AutoProcessor, SpeechT5ForTextToSpeech |
|
|
|
processor = AutoProcessor.from_pretrained("jjsprockel/speecht5_finetuned_voxpopuli_it") |
|
model = SpeechT5ForTextToSpeech.from_pretrained("jjsprockel/speecht5_finetuned_voxpopuli_it") |
|
|
|
speaker_embeddings = torch.tensor(example["speaker_embeddings"]).unsqueeze(0) |
|
|
|
text = "Quando pensi che sarà possibile viaggiare?" |
|
inputs = processor(text=text, return_tensors="pt") |
|
|
|
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") |
|
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) |
|
|
|
from IPython.display import Audio |
|
Audio(speech.numpy(), rate=16000) |
|
|
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 4000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 0.5445 | 6.13 | 1000 | 0.5106 | |
|
| 0.5262 | 12.26 | 2000 | 0.4964 | |
|
| 0.5154 | 18.39 | 3000 | 0.4918 | |
|
| 0.5186 | 24.52 | 4000 | 0.4896 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |