change rotary base
#31
by
jupyterjazz
- opened
- block.py +1 -11
- configuration_xlm_roberta.py +2 -0
- embedding.py +20 -24
- mha.py +31 -36
- mlp.py +25 -19
- modeling_lora.py +21 -12
- modeling_xlm_roberta.py +40 -31
- rotary.py +12 -1
- xlm_padding.py +5 -1
block.py
CHANGED
@@ -233,17 +233,7 @@ class Block(nn.Module):
|
|
233 |
is_rms_norm=isinstance(self.norm1, RMSNorm),
|
234 |
)
|
235 |
if not isinstance(self.mlp, nn.Identity):
|
236 |
-
|
237 |
-
if task_type:
|
238 |
-
if isinstance(task_type, tuple):
|
239 |
-
assert mixer_kwargs['cu_seqlens'].shape[0] % 9 == 1
|
240 |
-
split_index = int((mixer_kwargs['cu_seqlens'].shape[0] - 1) / 9)
|
241 |
-
split = mixer_kwargs['cu_seqlens'][split_index]
|
242 |
-
mlp_out = self.mlp(hidden_states, task_type=mixer_kwargs.get('task_type'), split=split)
|
243 |
-
else:
|
244 |
-
mlp_out = self.mlp(hidden_states, task_type=task_type)
|
245 |
-
else:
|
246 |
-
mlp_out = self.mlp(hidden_states)
|
247 |
if self.return_residual: # mlp out is actually a pair here
|
248 |
mlp_out, hidden_states = mlp_out
|
249 |
if not self.fused_dropout_add_ln:
|
|
|
233 |
is_rms_norm=isinstance(self.norm1, RMSNorm),
|
234 |
)
|
235 |
if not isinstance(self.mlp, nn.Identity):
|
236 |
+
mlp_out = self.mlp(hidden_states, cu_adapter_mask=mixer_kwargs.get('cu_adapter_mask'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
if self.return_residual: # mlp out is actually a pair here
|
238 |
mlp_out, hidden_states = mlp_out
|
239 |
if not self.fused_dropout_add_ln:
|
configuration_xlm_roberta.py
CHANGED
@@ -20,6 +20,7 @@ class XLMRobertaFlashConfig(PretrainedConfig):
|
|
20 |
bos_token_id=0,
|
21 |
eos_token_id=2,
|
22 |
position_embedding_type="absolute",
|
|
|
23 |
use_cache=True,
|
24 |
classifier_dropout=None,
|
25 |
lora_adaptations=None,
|
@@ -52,6 +53,7 @@ class XLMRobertaFlashConfig(PretrainedConfig):
|
|
52 |
self.initializer_range = initializer_range
|
53 |
self.layer_norm_eps = layer_norm_eps
|
54 |
self.position_embedding_type = position_embedding_type
|
|
|
55 |
self.use_cache = use_cache
|
56 |
self.classifier_dropout = classifier_dropout
|
57 |
self.load_trained_adapters = load_trained_adapters
|
|
|
20 |
bos_token_id=0,
|
21 |
eos_token_id=2,
|
22 |
position_embedding_type="absolute",
|
23 |
+
rotary_emb_base=10000.0,
|
24 |
use_cache=True,
|
25 |
classifier_dropout=None,
|
26 |
lora_adaptations=None,
|
|
|
53 |
self.initializer_range = initializer_range
|
54 |
self.layer_norm_eps = layer_norm_eps
|
55 |
self.position_embedding_type = position_embedding_type
|
56 |
+
self.rotary_emb_base = rotary_emb_base
|
57 |
self.use_cache = use_cache
|
58 |
self.classifier_dropout = classifier_dropout
|
59 |
self.load_trained_adapters = load_trained_adapters
|
embedding.py
CHANGED
@@ -40,25 +40,25 @@ class XLMRobertaEmbeddings(nn.Module):
|
|
40 |
if self.type_vocab_size > 0:
|
41 |
self.token_type_embeddings = nn.Embedding(type_vocab_size, embed_dim, **factory_kwargs)
|
42 |
|
43 |
-
def forward(self, input_ids, position_ids=None, token_type_ids=None,
|
44 |
"""
|
45 |
input_ids: (batch, seqlen)
|
46 |
position_ids: (batch, seqlen)
|
47 |
token_type_ids: (batch, seqlen)
|
48 |
"""
|
49 |
batch_size, seqlen = input_ids.shape
|
50 |
-
if
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
58 |
else:
|
59 |
-
|
60 |
-
embeddings = self.word_embeddings(input_ids, **lora_kwargs)
|
61 |
-
|
62 |
if self.max_position_embeddings > 0:
|
63 |
if position_ids is None:
|
64 |
position_ids = create_position_ids_from_input_ids(input_ids, padding_idx=self.word_embeddings.padding_idx).to(input_ids.device)
|
@@ -68,18 +68,14 @@ class XLMRobertaEmbeddings(nn.Module):
|
|
68 |
if self.type_vocab_size > 0:
|
69 |
if token_type_ids is None:
|
70 |
token_type_ids = torch.zeros(seqlen, dtype=torch.long, device=input_ids.device)
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
emb1 = emb1 + token_type_embs1
|
79 |
-
emb2 = emb2 + token_type_embs2
|
80 |
-
embeddings = torch.cat((emb1, emb2), dim=0)
|
81 |
else:
|
82 |
-
|
83 |
-
token_type_embeddings = self.token_type_embeddings(token_type_ids, **lora_kwargs)
|
84 |
embeddings = embeddings + token_type_embeddings
|
85 |
return embeddings
|
|
|
40 |
if self.type_vocab_size > 0:
|
41 |
self.token_type_embeddings = nn.Embedding(type_vocab_size, embed_dim, **factory_kwargs)
|
42 |
|
43 |
+
def forward(self, input_ids, position_ids=None, token_type_ids=None, adapter_mask=None):
|
44 |
"""
|
45 |
input_ids: (batch, seqlen)
|
46 |
position_ids: (batch, seqlen)
|
47 |
token_type_ids: (batch, seqlen)
|
48 |
"""
|
49 |
batch_size, seqlen = input_ids.shape
|
50 |
+
if adapter_mask is not None:
|
51 |
+
unique_tasks = torch.unique(adapter_mask)
|
52 |
+
embedding_dtype = next(self.word_embeddings.parameters()).dtype
|
53 |
+
embeddings = torch.empty(*input_ids.shape, self.word_embeddings.embedding_dim,
|
54 |
+
dtype=embedding_dtype, device=input_ids.device)
|
55 |
+
for task_id in unique_tasks:
|
56 |
+
task_indices = (adapter_mask == task_id).nonzero(as_tuple=True)[0]
|
57 |
+
task_input_ids = input_ids[task_indices]
|
58 |
+
task_embeddings = self.word_embeddings(task_input_ids, task_id=task_id)
|
59 |
+
embeddings[task_indices] = task_embeddings
|
60 |
else:
|
61 |
+
embeddings = self.word_embeddings(input_ids)
|
|
|
|
|
62 |
if self.max_position_embeddings > 0:
|
63 |
if position_ids is None:
|
64 |
position_ids = create_position_ids_from_input_ids(input_ids, padding_idx=self.word_embeddings.padding_idx).to(input_ids.device)
|
|
|
68 |
if self.type_vocab_size > 0:
|
69 |
if token_type_ids is None:
|
70 |
token_type_ids = torch.zeros(seqlen, dtype=torch.long, device=input_ids.device)
|
71 |
+
|
72 |
+
if adapter_mask is not None:
|
73 |
+
unique_tasks = torch.unique(adapter_mask)
|
74 |
+
for task_id in unique_tasks:
|
75 |
+
task_token_type_embeddings = self.token_type_embeddings(token_type_ids, task_id=task_id)
|
76 |
+
task_indices = (adapter_mask == task_id).nonzero(as_tuple=True)[0]
|
77 |
+
embeddings[task_indices] = embeddings[task_indices] + task_token_type_embeddings
|
|
|
|
|
|
|
78 |
else:
|
79 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
|
|
80 |
embeddings = embeddings + token_type_embeddings
|
81 |
return embeddings
|
mha.py
CHANGED
@@ -590,7 +590,7 @@ class MHA(nn.Module):
|
|
590 |
max_seqlen=None,
|
591 |
mixer_subset=None,
|
592 |
inference_params=None,
|
593 |
-
|
594 |
**kwargs,
|
595 |
):
|
596 |
"""
|
@@ -647,35 +647,27 @@ class MHA(nn.Module):
|
|
647 |
if not self.cross_attn and self.num_heads_kv == self.num_heads:
|
648 |
assert x_kv is None and mixer_subset is None
|
649 |
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
qkv2 = self.Wqkv(tensor2, task_type=task_type[1])
|
664 |
-
qkv = torch.cat((qkv1, qkv2), dim=0)
|
665 |
-
else:
|
666 |
-
qkv = self.Wqkv(x, **lora_kwargs)
|
667 |
else:
|
668 |
-
if
|
669 |
-
|
670 |
-
tensor2 = x[split:, :]
|
671 |
-
qkv1, tensor1 = self.Wqkv(tensor1, task_type=task_type[0], residual=True)
|
672 |
-
qkv2, tensor2 = self.Wqkv(tensor2, task_type=task_type[1], residual=True)
|
673 |
-
qkv = torch.cat((qkv1, qkv2), dim=0)
|
674 |
-
x = torch.cat((tensor1, tensor2), dim=0)
|
675 |
else:
|
676 |
-
if
|
677 |
-
|
678 |
-
|
|
|
679 |
|
680 |
if self.dwconv:
|
681 |
qkv = rearrange(
|
@@ -762,14 +754,17 @@ class MHA(nn.Module):
|
|
762 |
else:
|
763 |
context = self._apply_rotary_update_kvcache_attention(q, kv, inference_params)
|
764 |
|
765 |
-
lora_kwargs.pop('residual', None)
|
766 |
inp = rearrange(context, "... h d -> ... (h d)")
|
767 |
-
if
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
|
|
|
|
|
|
|
|
|
773 |
else:
|
774 |
-
out = self.out_proj(inp
|
775 |
return out if not self.return_residual else (out, x)
|
|
|
590 |
max_seqlen=None,
|
591 |
mixer_subset=None,
|
592 |
inference_params=None,
|
593 |
+
cu_adapter_mask=None,
|
594 |
**kwargs,
|
595 |
):
|
596 |
"""
|
|
|
647 |
if not self.cross_attn and self.num_heads_kv == self.num_heads:
|
648 |
assert x_kv is None and mixer_subset is None
|
649 |
|
650 |
+
if cu_adapter_mask is not None:
|
651 |
+
unique_tasks = torch.unique(cu_adapter_mask)
|
652 |
+
qkv_dtype = next(self.Wqkv.parameters()).dtype
|
653 |
+
qkv = torch.empty(x.shape[0], self.Wqkv.out_features,
|
654 |
+
dtype=qkv_dtype, device=x.device)
|
655 |
+
for task_id in unique_tasks:
|
656 |
+
task_indices = (cu_adapter_mask == task_id).nonzero(as_tuple=True)[0]
|
657 |
+
task_tensor = x[task_indices]
|
658 |
+
if not self.return_residual:
|
659 |
+
task_qkv = self.Wqkv(task_tensor, task_id=task_id)
|
660 |
+
else:
|
661 |
+
task_qkv, _ = self.Wqkv(task_tensor, task_id=task_id, residual=True)
|
662 |
+
qkv[task_indices] = task_qkv
|
|
|
|
|
|
|
|
|
663 |
else:
|
664 |
+
if not self.return_residual:
|
665 |
+
qkv = self.Wqkv(x)
|
|
|
|
|
|
|
|
|
|
|
666 |
else:
|
667 |
+
if hasattr(self.Wqkv, 'parametrizations'):
|
668 |
+
qkv, x = self.Wqkv(x, residual=True)
|
669 |
+
else:
|
670 |
+
qkv, x = self.Wqkv(x)
|
671 |
|
672 |
if self.dwconv:
|
673 |
qkv = rearrange(
|
|
|
754 |
else:
|
755 |
context = self._apply_rotary_update_kvcache_attention(q, kv, inference_params)
|
756 |
|
|
|
757 |
inp = rearrange(context, "... h d -> ... (h d)")
|
758 |
+
if cu_adapter_mask is not None:
|
759 |
+
unique_tasks = torch.unique(cu_adapter_mask)
|
760 |
+
out_dtype = next(self.out_proj.parameters()).dtype
|
761 |
+
out = torch.empty(inp.shape[0], self.out_proj.out_features,
|
762 |
+
dtype=out_dtype, device=inp.device)
|
763 |
+
for task_id in unique_tasks:
|
764 |
+
task_indices = (cu_adapter_mask == task_id).nonzero(as_tuple=True)[0]
|
765 |
+
task_tensor = inp[task_indices]
|
766 |
+
task_out = self.out_proj(task_tensor, task_id=task_id)
|
767 |
+
out[task_indices] = task_out
|
768 |
else:
|
769 |
+
out = self.out_proj(inp)
|
770 |
return out if not self.return_residual else (out, x)
|
mlp.py
CHANGED
@@ -47,30 +47,36 @@ class Mlp(nn.Module):
|
|
47 |
self.activation = activation
|
48 |
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2, **factory_kwargs)
|
49 |
|
50 |
-
def forward(self, x,
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
59 |
else:
|
60 |
-
y = self.fc1(x
|
61 |
|
62 |
y = self.activation(y)
|
63 |
|
64 |
-
if
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
71 |
else:
|
72 |
-
|
73 |
-
|
|
|
74 |
|
75 |
|
76 |
class ParallelMLP(nn.Module):
|
|
|
47 |
self.activation = activation
|
48 |
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2, **factory_kwargs)
|
49 |
|
50 |
+
def forward(self, x, cu_adapter_mask=None):
|
51 |
+
if cu_adapter_mask is not None:
|
52 |
+
unique_tasks = torch.unique(cu_adapter_mask)
|
53 |
+
fc1_dtype = next(self.fc1.parameters()).dtype
|
54 |
+
y = torch.empty(x.shape[0], self.fc1.out_features,
|
55 |
+
dtype=fc1_dtype, device=x.device)
|
56 |
+
for task_id in unique_tasks:
|
57 |
+
task_indices = (cu_adapter_mask == task_id).nonzero(as_tuple=True)[0]
|
58 |
+
task_tensor = x[task_indices]
|
59 |
+
task_y = self.fc1(task_tensor, task_id=task_id)
|
60 |
+
y[task_indices] = task_y
|
61 |
else:
|
62 |
+
y = self.fc1(x)
|
63 |
|
64 |
y = self.activation(y)
|
65 |
|
66 |
+
if cu_adapter_mask is not None:
|
67 |
+
unique_tasks = torch.unique(cu_adapter_mask)
|
68 |
+
fc2_dtype = next(self.fc2.parameters()).dtype
|
69 |
+
out = torch.empty(y.shape[0], self.fc2.out_features,
|
70 |
+
dtype=fc2_dtype, device=y.device)
|
71 |
+
for task_id in unique_tasks:
|
72 |
+
task_indices = (cu_adapter_mask == task_id).nonzero(as_tuple=True)[0]
|
73 |
+
task_tensor = y[task_indices]
|
74 |
+
task_out = self.fc2(task_tensor, task_id=task_id)
|
75 |
+
out[task_indices] = task_out
|
76 |
else:
|
77 |
+
out = self.fc2(y)
|
78 |
+
|
79 |
+
return out if not self.return_residual else (out, x)
|
80 |
|
81 |
|
82 |
class ParallelMLP(nn.Module):
|
modeling_lora.py
CHANGED
@@ -161,7 +161,6 @@ class LoRAParametrization(nn.Module):
|
|
161 |
rank: int,
|
162 |
dropout_p: float,
|
163 |
alpha: float,
|
164 |
-
adaptation_map: dict,
|
165 |
):
|
166 |
if isinstance(layer, nn.Linear):
|
167 |
parametrize.register_parametrization(
|
@@ -176,10 +175,9 @@ class LoRAParametrization(nn.Module):
|
|
176 |
),
|
177 |
)
|
178 |
|
179 |
-
def new_forward(self, input,
|
180 |
-
|
181 |
-
|
182 |
-
weights = self.parametrizations.weight[0].lora_forward(self.weight, current_task=task_idx)
|
183 |
else:
|
184 |
weights = self.weight
|
185 |
|
@@ -204,10 +202,9 @@ class LoRAParametrization(nn.Module):
|
|
204 |
),
|
205 |
)
|
206 |
|
207 |
-
def new_forward(self, input,
|
208 |
-
|
209 |
-
|
210 |
-
weights = self.parametrizations.weight[0].lora_forward(self.weight, current_task=task_idx)
|
211 |
else:
|
212 |
weights = self.weight
|
213 |
|
@@ -265,6 +262,14 @@ class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
|
265 |
self.main_params_trainable = config.lora_main_params_trainable
|
266 |
|
267 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
@property
|
269 |
def main_params_trainable(self):
|
270 |
return self._main_params_trainable
|
@@ -317,7 +322,6 @@ class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
|
317 |
rank=rank,
|
318 |
dropout_p=dropout_p,
|
319 |
alpha=alpha,
|
320 |
-
adaptation_map=self._adaptation_map,
|
321 |
)
|
322 |
)
|
323 |
|
@@ -340,6 +344,7 @@ class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
|
340 |
@torch.inference_mode()
|
341 |
def encode(
|
342 |
self,
|
|
|
343 |
*args,
|
344 |
task_type: Optional[str] = None,
|
345 |
**kwargs,
|
@@ -358,5 +363,9 @@ class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
|
358 |
f"Supported tasks are: {', '.join(self.config.lora_adaptations)}."
|
359 |
f"Alternatively, don't pass the `task_type` argument to disable LoRA."
|
360 |
)
|
361 |
-
|
362 |
-
|
|
|
|
|
|
|
|
|
|
161 |
rank: int,
|
162 |
dropout_p: float,
|
163 |
alpha: float,
|
|
|
164 |
):
|
165 |
if isinstance(layer, nn.Linear):
|
166 |
parametrize.register_parametrization(
|
|
|
175 |
),
|
176 |
)
|
177 |
|
178 |
+
def new_forward(self, input, task_id=None, residual=False):
|
179 |
+
if task_id is not None:
|
180 |
+
weights = self.parametrizations.weight[0].lora_forward(self.weight, current_task=task_id)
|
|
|
181 |
else:
|
182 |
weights = self.weight
|
183 |
|
|
|
202 |
),
|
203 |
)
|
204 |
|
205 |
+
def new_forward(self, input, task_id=None):
|
206 |
+
if task_id is not None:
|
207 |
+
weights = self.parametrizations.weight[0].lora_forward(self.weight, current_task=task_id)
|
|
|
208 |
else:
|
209 |
weights = self.weight
|
210 |
|
|
|
262 |
self.main_params_trainable = config.lora_main_params_trainable
|
263 |
|
264 |
|
265 |
+
@property
|
266 |
+
def rotary_emb_base(self):
|
267 |
+
return self.roberta.rotary_emb_base
|
268 |
+
|
269 |
+
@rotary_emb_base.setter
|
270 |
+
def rotary_emb_base(self, base):
|
271 |
+
self.roberta.rotary_emb_base = base
|
272 |
+
|
273 |
@property
|
274 |
def main_params_trainable(self):
|
275 |
return self._main_params_trainable
|
|
|
322 |
rank=rank,
|
323 |
dropout_p=dropout_p,
|
324 |
alpha=alpha,
|
|
|
325 |
)
|
326 |
)
|
327 |
|
|
|
344 |
@torch.inference_mode()
|
345 |
def encode(
|
346 |
self,
|
347 |
+
sentences: Union[str, List[str]],
|
348 |
*args,
|
349 |
task_type: Optional[str] = None,
|
350 |
**kwargs,
|
|
|
363 |
f"Supported tasks are: {', '.join(self.config.lora_adaptations)}."
|
364 |
f"Alternatively, don't pass the `task_type` argument to disable LoRA."
|
365 |
)
|
366 |
+
adapter_mask = None
|
367 |
+
if task_type:
|
368 |
+
task_id = self._adaptation_map[task_type]
|
369 |
+
num_examples = 1 if isinstance(sentences, str) else len(sentences)
|
370 |
+
adapter_mask = torch.full((num_examples,), task_id, dtype=torch.int32, device=self.device)
|
371 |
+
return self.roberta.encode(sentences, *args, adapter_mask=adapter_mask, **kwargs)
|
modeling_xlm_roberta.py
CHANGED
@@ -93,7 +93,7 @@ def create_mixer_cls(config, cross_attn=False, return_residual=False):
|
|
93 |
rotary_kwargs["rotary_emb_dim"] = getattr(
|
94 |
config, "rotary_emb_dim", config.hidden_size / config.num_attention_heads
|
95 |
)
|
96 |
-
rotary_kwargs["rotary_emb_base"] =
|
97 |
rotary_kwargs["rotary_emb_scale_base"] = getattr(
|
98 |
config, "rotary_emb_scale_base", None
|
99 |
)
|
@@ -204,16 +204,15 @@ class XLMRobertaEncoder(nn.Module):
|
|
204 |
def gradient_checkpointing(self, value):
|
205 |
self._grad_checkpointing = value
|
206 |
|
207 |
-
def forward(self, hidden_states, key_padding_mask=None, subset_mask=None,
|
208 |
"""If subset_mask is not None, we only want output for the subset of the sequence.
|
209 |
This means that we only compute the last layer output for these tokens.
|
210 |
subset_mask: (batch, seqlen), dtype=torch.bool
|
211 |
"""
|
212 |
if key_padding_mask is None or not self.use_flash_attn:
|
213 |
-
mixer_kwargs = {'
|
214 |
if key_padding_mask is not None:
|
215 |
mixer_kwargs['key_padding_mask'] = key_padding_mask.bool()
|
216 |
-
|
217 |
for layer in self.layers:
|
218 |
if self._grad_checkpointing:
|
219 |
hidden_states = torch.utils.checkpoint.checkpoint(
|
@@ -228,10 +227,11 @@ class XLMRobertaEncoder(nn.Module):
|
|
228 |
hidden_states = hidden_states[subset_mask]
|
229 |
else:
|
230 |
batch, seqlen = hidden_states.shape[:2]
|
231 |
-
hidden_states, indices, cu_seqlens, max_seqlen_in_batch = unpad_input(
|
232 |
-
hidden_states, key_padding_mask
|
233 |
)
|
234 |
-
mixer_kwargs = {"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen_in_batch, "
|
|
|
235 |
if subset_mask is None:
|
236 |
for layer in self.layers:
|
237 |
if self._grad_checkpointing:
|
@@ -308,24 +308,22 @@ class XLMRobertaPooler(nn.Module):
|
|
308 |
self.dense = linear_cls(config.hidden_size, config.hidden_size)
|
309 |
self.activation = nn.Tanh()
|
310 |
|
311 |
-
def forward(self, hidden_states, pool=True,
|
312 |
# We "pool" the model by simply taking the hidden state corresponding
|
313 |
# to the first token.
|
314 |
-
lora_kwargs = {'task_type': task_type} if task_type is not None else {}
|
315 |
-
|
316 |
first_token_tensor = hidden_states[:, 0] if pool else hidden_states
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
|
|
326 |
else:
|
327 |
-
pooled_output = self.dense(first_token_tensor
|
328 |
-
|
329 |
pooled_output = self.activation(pooled_output)
|
330 |
return pooled_output
|
331 |
|
@@ -438,7 +436,6 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
438 |
"gelu_fast",
|
439 |
"gelu_pytorch_tanh",
|
440 |
]
|
441 |
-
|
442 |
self.embeddings = XLMRobertaEmbeddings(
|
443 |
config.hidden_size,
|
444 |
config.vocab_size,
|
@@ -453,6 +450,7 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
453 |
|
454 |
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
455 |
self.tokenizer = AutoTokenizer.from_pretrained(self.name_or_path, trust_remote_code=True)
|
|
|
456 |
|
457 |
@torch.inference_mode()
|
458 |
def encode(
|
@@ -466,6 +464,7 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
466 |
device: Optional[torch.device] = None,
|
467 |
normalize_embeddings: bool = False,
|
468 |
truncate_dim: Optional[int] = None,
|
|
|
469 |
task_type: Optional[str] = None,
|
470 |
**tokenizer_kwargs,
|
471 |
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
|
@@ -551,14 +550,14 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
551 |
)
|
552 |
else:
|
553 |
range_iter = range(0, len(sentences), batch_size)
|
554 |
-
|
555 |
for i in range_iter:
|
556 |
encoded_input = self.tokenizer(
|
557 |
sentences[i : i + batch_size],
|
558 |
return_tensors='pt',
|
559 |
**tokenizer_kwargs,
|
560 |
).to(self.device)
|
561 |
-
token_embs = self.forward(**encoded_input, **
|
562 |
|
563 |
# Accumulate in fp32 to avoid overflow
|
564 |
token_embs = token_embs.float()
|
@@ -601,7 +600,6 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
601 |
self.train(is_training)
|
602 |
return all_embeddings
|
603 |
|
604 |
-
|
605 |
def truncate_embeddings(self, embeddings, truncate_dim):
|
606 |
if not self.config.matryoshka_dimensions:
|
607 |
logger.warning(
|
@@ -624,12 +622,23 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
624 |
input_mask_expanded.sum(1), min=1e-9
|
625 |
)
|
626 |
|
627 |
-
|
628 |
def cls_pooling(
|
629 |
self, token_embeddings: torch.Tensor, attention_mask: torch.Tensor
|
630 |
):
|
631 |
return token_embeddings[:,0]
|
632 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
633 |
|
634 |
def forward(
|
635 |
self,
|
@@ -646,7 +655,7 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
646 |
layer output for these tokens.
|
647 |
masked_tokens_mask: (batch, seqlen), dtype=torch.bool
|
648 |
"""
|
649 |
-
|
650 |
if kwargs:
|
651 |
for key, value in kwargs.items():
|
652 |
if value is not None:
|
@@ -660,7 +669,7 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
660 |
)
|
661 |
|
662 |
hidden_states = self.embeddings(
|
663 |
-
input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
|
664 |
)
|
665 |
# TD [2022-12:18]: Don't need to force residual in fp32
|
666 |
# BERT puts embedding LayerNorm before embedding dropout.
|
@@ -684,12 +693,12 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
684 |
subset_mask = None
|
685 |
|
686 |
sequence_output = self.encoder(
|
687 |
-
hidden_states, key_padding_mask=attention_mask, subset_mask=subset_mask,
|
688 |
)
|
689 |
|
690 |
if masked_tokens_mask is None:
|
691 |
pooled_output = (
|
692 |
-
self.pooler(sequence_output,
|
693 |
)
|
694 |
else:
|
695 |
# TD [2022-03-01]: the indexing here is very tricky.
|
@@ -703,7 +712,7 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
703 |
pool_input = sequence_output[first_col_mask[subset_mask]]
|
704 |
sequence_output = sequence_output[masked_tokens_mask[subset_mask]]
|
705 |
pooled_output = (
|
706 |
-
self.pooler(pool_input, pool=False,
|
707 |
)
|
708 |
|
709 |
if not return_dict:
|
|
|
93 |
rotary_kwargs["rotary_emb_dim"] = getattr(
|
94 |
config, "rotary_emb_dim", config.hidden_size / config.num_attention_heads
|
95 |
)
|
96 |
+
rotary_kwargs["rotary_emb_base"] = config.rotary_emb_base
|
97 |
rotary_kwargs["rotary_emb_scale_base"] = getattr(
|
98 |
config, "rotary_emb_scale_base", None
|
99 |
)
|
|
|
204 |
def gradient_checkpointing(self, value):
|
205 |
self._grad_checkpointing = value
|
206 |
|
207 |
+
def forward(self, hidden_states, key_padding_mask=None, subset_mask=None, adapter_mask=None):
|
208 |
"""If subset_mask is not None, we only want output for the subset of the sequence.
|
209 |
This means that we only compute the last layer output for these tokens.
|
210 |
subset_mask: (batch, seqlen), dtype=torch.bool
|
211 |
"""
|
212 |
if key_padding_mask is None or not self.use_flash_attn:
|
213 |
+
mixer_kwargs = {'adapter_mask': adapter_mask}
|
214 |
if key_padding_mask is not None:
|
215 |
mixer_kwargs['key_padding_mask'] = key_padding_mask.bool()
|
|
|
216 |
for layer in self.layers:
|
217 |
if self._grad_checkpointing:
|
218 |
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
|
227 |
hidden_states = hidden_states[subset_mask]
|
228 |
else:
|
229 |
batch, seqlen = hidden_states.shape[:2]
|
230 |
+
hidden_states, indices, cu_seqlens, max_seqlen_in_batch, cu_adapter_mask = unpad_input(
|
231 |
+
hidden_states, key_padding_mask, adapter_mask
|
232 |
)
|
233 |
+
mixer_kwargs = {"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen_in_batch, "cu_adapter_mask": cu_adapter_mask}
|
234 |
+
|
235 |
if subset_mask is None:
|
236 |
for layer in self.layers:
|
237 |
if self._grad_checkpointing:
|
|
|
308 |
self.dense = linear_cls(config.hidden_size, config.hidden_size)
|
309 |
self.activation = nn.Tanh()
|
310 |
|
311 |
+
def forward(self, hidden_states, pool=True, adapter_mask=None):
|
312 |
# We "pool" the model by simply taking the hidden state corresponding
|
313 |
# to the first token.
|
|
|
|
|
314 |
first_token_tensor = hidden_states[:, 0] if pool else hidden_states
|
315 |
+
if adapter_mask is not None:
|
316 |
+
unique_tasks = torch.unique(adapter_mask)
|
317 |
+
pool_dtype = next(self.dense.parameters()).dtype
|
318 |
+
pooled_output = torch.empty(first_token_tensor.shape[0], self.dense.out_features,
|
319 |
+
dtype=pool_dtype, device=first_token_tensor.device)
|
320 |
+
for task_id in unique_tasks:
|
321 |
+
task_indices = (adapter_mask == task_id).nonzero(as_tuple=True)[0]
|
322 |
+
task_first_token_tensor = first_token_tensor[task_indices]
|
323 |
+
task_pooled_output = self.dense(task_first_token_tensor, task_id=task_id)
|
324 |
+
pooled_output[task_indices] = task_pooled_output
|
325 |
else:
|
326 |
+
pooled_output = self.dense(first_token_tensor)
|
|
|
327 |
pooled_output = self.activation(pooled_output)
|
328 |
return pooled_output
|
329 |
|
|
|
436 |
"gelu_fast",
|
437 |
"gelu_pytorch_tanh",
|
438 |
]
|
|
|
439 |
self.embeddings = XLMRobertaEmbeddings(
|
440 |
config.hidden_size,
|
441 |
config.vocab_size,
|
|
|
450 |
|
451 |
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
452 |
self.tokenizer = AutoTokenizer.from_pretrained(self.name_or_path, trust_remote_code=True)
|
453 |
+
self._rotary_emb_base = config.rotary_emb_base
|
454 |
|
455 |
@torch.inference_mode()
|
456 |
def encode(
|
|
|
464 |
device: Optional[torch.device] = None,
|
465 |
normalize_embeddings: bool = False,
|
466 |
truncate_dim: Optional[int] = None,
|
467 |
+
adapter_mask: Optional[torch.Tensor] = None,
|
468 |
task_type: Optional[str] = None,
|
469 |
**tokenizer_kwargs,
|
470 |
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
|
|
|
550 |
)
|
551 |
else:
|
552 |
range_iter = range(0, len(sentences), batch_size)
|
553 |
+
lora_arguments = {'adapter_mask': adapter_mask} if adapter_mask is not None else {}
|
554 |
for i in range_iter:
|
555 |
encoded_input = self.tokenizer(
|
556 |
sentences[i : i + batch_size],
|
557 |
return_tensors='pt',
|
558 |
**tokenizer_kwargs,
|
559 |
).to(self.device)
|
560 |
+
token_embs = self.forward(**encoded_input, **lora_arguments)[0]
|
561 |
|
562 |
# Accumulate in fp32 to avoid overflow
|
563 |
token_embs = token_embs.float()
|
|
|
600 |
self.train(is_training)
|
601 |
return all_embeddings
|
602 |
|
|
|
603 |
def truncate_embeddings(self, embeddings, truncate_dim):
|
604 |
if not self.config.matryoshka_dimensions:
|
605 |
logger.warning(
|
|
|
622 |
input_mask_expanded.sum(1), min=1e-9
|
623 |
)
|
624 |
|
|
|
625 |
def cls_pooling(
|
626 |
self, token_embeddings: torch.Tensor, attention_mask: torch.Tensor
|
627 |
):
|
628 |
return token_embeddings[:,0]
|
629 |
|
630 |
+
@property
|
631 |
+
def rotary_emb_base(self):
|
632 |
+
return self._rotary_emb_base
|
633 |
+
|
634 |
+
@rotary_emb_base.setter
|
635 |
+
def rotary_emb_base(self, base):
|
636 |
+
if not isinstance(base, (int, float)):
|
637 |
+
raise TypeError("Base must be an integer or float")
|
638 |
+
logger.info(f'Changing RoPE base value to {base}')
|
639 |
+
for layer in self.encoder.layers:
|
640 |
+
layer.mixer.rotary_emb.base = base
|
641 |
+
self._rotary_emb_base = base
|
642 |
|
643 |
def forward(
|
644 |
self,
|
|
|
655 |
layer output for these tokens.
|
656 |
masked_tokens_mask: (batch, seqlen), dtype=torch.bool
|
657 |
"""
|
658 |
+
adapter_mask = kwargs.pop('adapter_mask', None)
|
659 |
if kwargs:
|
660 |
for key, value in kwargs.items():
|
661 |
if value is not None:
|
|
|
669 |
)
|
670 |
|
671 |
hidden_states = self.embeddings(
|
672 |
+
input_ids, position_ids=position_ids, token_type_ids=token_type_ids, adapter_mask=adapter_mask
|
673 |
)
|
674 |
# TD [2022-12:18]: Don't need to force residual in fp32
|
675 |
# BERT puts embedding LayerNorm before embedding dropout.
|
|
|
693 |
subset_mask = None
|
694 |
|
695 |
sequence_output = self.encoder(
|
696 |
+
hidden_states, key_padding_mask=attention_mask, subset_mask=subset_mask, adapter_mask=adapter_mask
|
697 |
)
|
698 |
|
699 |
if masked_tokens_mask is None:
|
700 |
pooled_output = (
|
701 |
+
self.pooler(sequence_output, adapter_mask=adapter_mask) if self.pooler is not None else None
|
702 |
)
|
703 |
else:
|
704 |
# TD [2022-03-01]: the indexing here is very tricky.
|
|
|
712 |
pool_input = sequence_output[first_col_mask[subset_mask]]
|
713 |
sequence_output = sequence_output[masked_tokens_mask[subset_mask]]
|
714 |
pooled_output = (
|
715 |
+
self.pooler(pool_input, pool=False, adapter_mask=adapter_mask) if self.pooler is not None else None
|
716 |
)
|
717 |
|
718 |
if not return_dict:
|
rotary.py
CHANGED
@@ -443,7 +443,7 @@ class RotaryEmbedding(torch.nn.Module):
|
|
443 |
"""
|
444 |
super().__init__()
|
445 |
self.dim = dim
|
446 |
-
self.
|
447 |
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
448 |
# Generate and save the inverse frequency buffer (non trainable)
|
449 |
inv_freq = self._compute_inv_freq(device)
|
@@ -463,6 +463,17 @@ class RotaryEmbedding(torch.nn.Module):
|
|
463 |
self._cos_k_cached = None
|
464 |
self._sin_k_cached = None
|
465 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
466 |
def _compute_inv_freq(self, device=None):
|
467 |
return 1.0 / (
|
468 |
self.base
|
|
|
443 |
"""
|
444 |
super().__init__()
|
445 |
self.dim = dim
|
446 |
+
self._base = float(base)
|
447 |
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
448 |
# Generate and save the inverse frequency buffer (non trainable)
|
449 |
inv_freq = self._compute_inv_freq(device)
|
|
|
463 |
self._cos_k_cached = None
|
464 |
self._sin_k_cached = None
|
465 |
|
466 |
+
@property
|
467 |
+
def base(self):
|
468 |
+
return self._base
|
469 |
+
|
470 |
+
@base.setter
|
471 |
+
def base(self, new_base):
|
472 |
+
if new_base > 0:
|
473 |
+
self._base = float(new_base)
|
474 |
+
else:
|
475 |
+
raise ValueError("Rotary base value must be positive")
|
476 |
+
|
477 |
def _compute_inv_freq(self, device=None):
|
478 |
return 1.0 / (
|
479 |
self.base
|
xlm_padding.py
CHANGED
@@ -98,7 +98,7 @@ class IndexFirstAxisResidual(torch.autograd.Function):
|
|
98 |
index_first_axis_residual = IndexFirstAxisResidual.apply
|
99 |
|
100 |
|
101 |
-
def unpad_input(hidden_states, attention_mask):
|
102 |
"""
|
103 |
Arguments:
|
104 |
hidden_states: (batch, seqlen, ...)
|
@@ -113,6 +113,9 @@ def unpad_input(hidden_states, attention_mask):
|
|
113 |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
114 |
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
115 |
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
|
|
|
|
|
|
116 |
# TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
|
117 |
# bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
|
118 |
# times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
|
@@ -123,6 +126,7 @@ def unpad_input(hidden_states, attention_mask):
|
|
123 |
indices,
|
124 |
cu_seqlens,
|
125 |
max_seqlen_in_batch,
|
|
|
126 |
)
|
127 |
|
128 |
|
|
|
98 |
index_first_axis_residual = IndexFirstAxisResidual.apply
|
99 |
|
100 |
|
101 |
+
def unpad_input(hidden_states, attention_mask, adapter_mask=None):
|
102 |
"""
|
103 |
Arguments:
|
104 |
hidden_states: (batch, seqlen, ...)
|
|
|
113 |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
114 |
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
115 |
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
116 |
+
|
117 |
+
cu_adapter_mask = torch.repeat_interleave(adapter_mask, cu_seqlens[1:] - cu_seqlens[:-1]) if adapter_mask is not None else None
|
118 |
+
|
119 |
# TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
|
120 |
# bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
|
121 |
# times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
|
|
|
126 |
indices,
|
127 |
cu_seqlens,
|
128 |
max_seqlen_in_batch,
|
129 |
+
cu_adapter_mask,
|
130 |
)
|
131 |
|
132 |
|