File size: 10,371 Bytes
f077afa 8177662 f077afa ac0d180 f077afa 3a2c2be ac0d180 3a2c2be f077afa 3a2c2be f077afa 3a2c2be f077afa 3a2c2be f077afa 3a2c2be f077afa 3a2c2be f077afa 8177662 f077afa 8177662 ac0d180 8177662 f077afa 3252a4e f077afa 8177662 f077afa 8177662 f077afa 8177662 ac0d180 8177662 c9ad371 8177662 f077afa 041836f f077afa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
---
license: cc-by-nc-4.0
tags:
- feature-extraction
- sentence-similarity
- mteb
language:
- multilingual
- af
- am
- ar
- as
- az
- be
- bg
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- no
- om
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- th
- tl
- tr
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- zh
inference: false
library_name: transformers
---
<br><br>
<p align="center">
<img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/603763514de52ff951d89793/AFoybzd5lpBQXEBrQHuTt.png?w=200&h=200&f=face" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
</p>
<p align="center">
<b>The embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
</p>
<p align="center">
<b>Jina Embedding V3: A Multilingual Multi-Task Embedding Model</b>
</p>
## Quick Start
The easiest way to start using `jina-embeddings-v3` is with the [Jina Embedding API](https://jina.ai/embeddings/).
## Intended Usage & Model Info
`jina-embeddings-v3` is a **multilingual multi-task text embedding model** designed for a variety of NLP applications.
Based on the [XLM-RoBERTa architecture](https://huggingface.co/jinaai/xlm-roberta-flash-implementation),
this model supports [Rotary Position Embeddings (RoPE)](https://arxiv.org/abs/2104.09864) to handle long input sequences up to **8192 tokens**.
Additionally, it features [LoRA](https://arxiv.org/abs/2106.09685) adapters to generate task-specific embeddings efficiently.
### Key Features:
- **Extended Sequence Length:** Supports up to 8192 tokens with RoPE.
- **Task-Specific Embedding:** Customize embeddings through the `task_type` argument with the following options:
- `retrieval.query`: Used for query embeddings in asymmetric retrieval tasks
- `retrieval.passage`: Used for passage embeddings in asymmetric retrieval tasks
- `separation`: Used for embeddings in clustering and re-ranking applications
- `classification`: Used for embeddings in classification tasks
- `text-matching`: Used for embeddings in tasks that quantify similarity between two texts, such as STS or symmetric retrieval tasks
- **Matryoshka Embeddings**: Supports flexible embedding sizes (`32, 64, 128, 256, 512, 768, 1024`), allowing for truncating embeddings to fit your application.
### Model Lineage:
`jina-embeddings-v3` builds upon the [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) model, which was originally trained on 100 languages.
We extended its capabilities with an extra pretraining phase on the [CulturaX](https://huggingface.co/datasets/uonlp/CulturaX) dataset,
then contrastively fine-tuned it on 30 languages for enhanced performance on embedding tasks in both monolingual and cross-lingual setups.
### Supported Languages:
While the base model supports 100 languages, we've focused our tuning efforts on the following 30 languages:
**Arabic, Bengali, Chinese, Danish, Dutch, English, Finnish, French, Georgian, German, Greek,
Hindi, Indonesian, Italian, Japanese, Korean, Latvian, Norwegian, Polish, Portuguese, Romanian,
Russian, Slovak, Spanish, Swedish, Thai, Turkish, Ukrainian, Urdu,** and **Vietnamese.**
## Data & Parameters
The data and training details are described in the technical report (coming soon).
## Usage
**<details><summary>Apply mean pooling when integrating the model.</summary>**
<p>
### Why Use Mean Pooling?
Mean pooling takes all token embeddings from the model's output and averages them at the sentence or paragraph level.
This approach has been shown to produce high-quality sentence embeddings.
We provide an `encode` function that handles this for you automatically.
However, if you're working with the model directly, outside of the `encode` function,
you'll need to apply mean pooling manually. Here's how you can do it:
```python
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['How is the weather today?', 'What is the current weather like today?']
tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v3')
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v3', trust_remote_code=True)
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1)
```
</p>
</details>
The easiest way to start using `jina-embeddings-v3` is with the [Jina Embedding API](https://jina.ai/embeddings/).
Alternatively, you can use `jina-embeddings-v3` directly via Transformers package:
```python
!pip install transformers
from transformers import AutoModel
# Initialize the model
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v3', trust_remote_code=True)
texts = [
'Follow the white rabbit.', # English
'Sigue al conejo blanco.', # Spanish
'Suis le lapin blanc.', # French
'跟着白兔走。', # Chinese
'اتبع الأرنب الأبيض.', # Arabic
'Folge dem weißen Kaninchen.' # German
]
# When calling the `encode` function, you can choose a `task_type` based on the use case:
# 'retrieval.query', 'retrieval.passage', 'separation', 'classification', 'text-matching'
# Alternatively, you can choose not to pass a `task_type`, and no specific LoRA adapter will be used.
embeddings = model.encode(texts, task_type='text-matching')
# Compute similarities
print(embeddings[0] @ embeddings[1].T)
```
By default, the model supports a maximum sequence length of 8192 tokens.
However, if you want to truncate your input texts to a shorter length, you can pass the `max_length` parameter to the `encode` function:
```python
embeddings = model.encode(
['Very long ... document'],
max_length=2048
)
```
In case you want to use **Matryoshka embeddings** and switch to a different dimension,
you can adjust it by passing the `truncate_dim` parameter to the `encode` function:
```python
embeddings = model.encode(
['Sample text'],
truncate_dim=256
)
```
The latest version (#todo: specify version) of SentenceTransformers also supports `jina-embeddings-v3`:
```python
!pip install -U sentence-transformers
from sentence_transformers import SentenceTransformer
model = SentenceTransformer(
"jinaai/jina-embeddings-v3", trust_remote_code=True
)
task_type='retrieval.query'
embeddings = model.encode(['What is the weather like in Berlin today?'], task_type=task_type, prompt_name=task_type)
```
## Performance
### English MTEB
| Model | Average | Classification | Clustering | Pair Classification | Reranking | Retrieval | STS | Summarization |
|:------------------------------:|:-------:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
| jina-embeddings-v2-en | 58.12 | 68.82| 40.08| 84.44| 55.09| 45.64| 80.00| 30.56|
| jina-embeddings-v3 | **65.60** | **82.58**| 45.27| 84.01| 58.13| 53.87| **85.8** | 30.98|
| text-embedding-3-large | 62.03 | 75.45| 49.01| 84.22| 59.16| 55.44| 81.04| 29.92|
| multilingual-e5-large-instruct | 64.41 | 77.56| 47.1 | 86.19| 58.58| 52.47| 84.78| 30.39|
| Cohere-embed-multilingual-v3.0 | 60.08 | 64.01| 46.6 | 86.15| 57.86| 53.84| 83.15| 30.99|
### Multilingual MTEB
| Model | Average | Classification | Clustering | Pair Classification | Reranking | Retrieval | STS | Summarization |
|:------------------------------:|:-------:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
| jina-embeddings-v2 | 60.54 | 65.69| 39.36| **82.95**| 66.57| 58.24| 66.6 | - |
| jina-embeddings-v3 | **64.44** | **71.46**| 46.71| 76.91| 63.98| 57.98| **69.83**| - |
| multilingual-e5-large | 59.58 | 65.22| 42.12| 76.95| 63.4 | 52.37| 64.65| - |
| multilingual-e5-large-instruct | 64.25 | 67.45| **52.12**| 77.79| **69.02**| **58.38**| 68.77| - |
### Long Context Tasks (LongEmbed)
| Model | Average | NarrativeQA | Needle | Passkey | QMSum | SummScreen | WikiQA |
|:--------------------:|:-------:|:-----------:|:------:|:-------:|:-----:|:----------:|:------:|
| jina-embeddings-v3* | **70.39** | 33.32 | **84.00** | **100.00** | **39.75** | 92.78 | 72.46 |
| jina-embeddings-v2 | 58.12 | 37.89 | 54.25 | 50.25 | 38.87 | 93.48 | 73.99 |
| text-embedding-3-large | 51.3 | 44.09 | 29.25 | 63.00 | 32.49 | 84.80 | 54.16 |
| baai-bge-m3 | 56.56 | **45.76** | 40.25 | 46.00 | 35.54 | **94.09** | **77.73** |
**Notes:**
- `*`: text-matching adapter
#### Matryoshka Embeddings
| Task | 32 | 64 | 128 | 256 | 512 | 768 | 1024 |
|:-------------:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
| Retrieval | 52.54| 58.54| 61.64| 62.72| 63.16| 63.30| 63.35|
| STS | 76.35| 77.03| 77.43| 77.56| 77.59| 77.59| 77.58|
For a comprehensive evaluation and detailed metrics, please refer to the full paper available here (coming soon).
## Contact
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
## Citation
If you find `jina-embeddings-v3` useful in your research, please cite the following paper:
```bibtex
```
|