jupyterjazz commited on
Commit
ac0d180
1 Parent(s): a0162c8

readme: minor changes

Browse files
Files changed (1) hide show
  1. README.md +4 -9
README.md CHANGED
@@ -120,7 +120,7 @@ library_name: transformers
120
 
121
  ## Quick Start
122
 
123
- The easiest way to start using `jina-embeddings-v3` is Jina AI's [Embedding API](https://jina.ai/embeddings/).
124
 
125
 
126
  ## Intended Usage & Model Info
@@ -128,7 +128,7 @@ The easiest way to start using `jina-embeddings-v3` is Jina AI's [Embedding API]
128
 
129
  `jina-embeddings-v3` is a **multilingual multi-task text embedding model** designed for a variety of NLP applications.
130
  Based on the [XLM-RoBERTa architecture](https://huggingface.co/jinaai/xlm-roberta-flash-implementation),
131
- this model supports [Rotary Position Embeddings (RoPE)](https://arxiv.org/abs/2104.09864) to handle long sequences up to **8192 tokens**.
132
  Additionally, it features [LoRA](https://arxiv.org/abs/2106.09685) adapters to generate task-specific embeddings efficiently.
133
 
134
  ### Key Features:
@@ -201,7 +201,7 @@ embeddings = F.normalize(embeddings, p=2, dim=1)
201
  </p>
202
  </details>
203
 
204
- The easiest way to start using `jina-embeddings-v3` is Jina AI's [Embedding API](https://jina.ai/embeddings/).
205
 
206
  Alternatively, you can use `jina-embeddings-v3` directly via Transformers package:
207
  ```python
@@ -254,12 +254,7 @@ The latest version (#todo: specify version) of SentenceTransformers also support
254
  from sentence_transformers import SentenceTransformer
255
 
256
  model = SentenceTransformer(
257
- "jinaai/jina-embeddings-v3",
258
- prompts={
259
- "retrieval.query": "Represent the query for retrieving evidence documents: ",
260
- "retrieval.passage": "Represent the document for retrieval: ",
261
- },
262
- trust_remote_code=True
263
  )
264
 
265
  embeddings = model.encode(['What is the weather like in Berlin today?'], task_type='retrieval.query')
 
120
 
121
  ## Quick Start
122
 
123
+ The easiest way to start using `jina-embeddings-v3` is with the [Jina Embedding API](https://jina.ai/embeddings/).
124
 
125
 
126
  ## Intended Usage & Model Info
 
128
 
129
  `jina-embeddings-v3` is a **multilingual multi-task text embedding model** designed for a variety of NLP applications.
130
  Based on the [XLM-RoBERTa architecture](https://huggingface.co/jinaai/xlm-roberta-flash-implementation),
131
+ this model supports [Rotary Position Embeddings (RoPE)](https://arxiv.org/abs/2104.09864) to handle long input sequences up to **8192 tokens**.
132
  Additionally, it features [LoRA](https://arxiv.org/abs/2106.09685) adapters to generate task-specific embeddings efficiently.
133
 
134
  ### Key Features:
 
201
  </p>
202
  </details>
203
 
204
+ The easiest way to start using `jina-embeddings-v3` is with the [Jina Embedding API](https://jina.ai/embeddings/).
205
 
206
  Alternatively, you can use `jina-embeddings-v3` directly via Transformers package:
207
  ```python
 
254
  from sentence_transformers import SentenceTransformer
255
 
256
  model = SentenceTransformer(
257
+ "jinaai/jina-embeddings-v3", trust_remote_code=True
 
 
 
 
 
258
  )
259
 
260
  embeddings = model.encode(['What is the weather like in Berlin today?'], task_type='retrieval.query')