zephyr-7b-dpo-qlora / README.md
jikaixuan's picture
Model save
6366e7e verified
|
raw
history blame
3.53 kB
metadata
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
  - generated_from_trainer
model-index:
  - name: zephyr-7b-dpo-qlora
    results: []

zephyr-7b-dpo-qlora

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0136
  • Rewards/chosen: -376.5464
  • Rewards/rejected: -330.4243
  • Rewards/accuracies: 0.4544
  • Rewards/margins: -46.1221
  • Logps/rejected: -33295.5859
  • Logps/chosen: -37927.6367
  • Neglected: 256.0
  • Selected: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Neglected Selected
0.6727 0.1 100 0.6631 0.0074 -0.0332 0.7024 0.0405 -256.4745 -272.2623 256.0 0.0
0.0392 0.21 200 0.0276 -119.9914 -105.4188 0.4464 -14.5726 -10795.0420 -12272.1426 256.0 0.0
0.0208 0.31 300 0.0199 -281.3865 -245.2151 0.4444 -36.1714 -24774.6660 -28411.6465 256.0 0.0
0.0157 0.42 400 0.0161 -353.7562 -307.1862 0.4563 -46.5699 -30971.7832 -35648.6172 256.0 0.0
0.0182 0.52 500 0.0148 -331.5956 -289.6645 0.4464 -41.9311 -29219.6113 -33432.5625 256.0 0.0
0.013 0.63 600 0.0143 -356.6841 -312.4188 0.4544 -44.2654 -31495.0312 -35941.4141 256.0 0.0
0.0165 0.73 700 0.0143 -353.6940 -310.5345 0.4504 -43.1595 -31306.6094 -35642.4023 256.0 0.0
0.0145 0.84 800 0.0135 -374.0797 -328.2772 0.4544 -45.8026 -33080.8789 -37680.9766 256.0 0.0
0.0195 0.94 900 0.0137 -376.5184 -330.4032 0.4544 -46.1152 -33293.4727 -37924.8398 256.0 0.0

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.6
  • Tokenizers 0.14.1