jetmoe-8b-sft / README.md
zguo0525's picture
Upload README.md
bbca558 verified
|
raw
history blame
1.94 kB
metadata
base_model: jetmoe/jetmoe-8b
tags:
  - alignment-handbook
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrachat_200k
  - HuggingFaceH4/airoboros-3.2
  - HuggingFaceH4/Code-Feedback
  - HuggingFaceH4/orca-math-word-problems-200k
  - HuggingFaceH4/SystemChat
  - HuggingFaceH4/capybara
model-index:
  - name: jetmoe-8b-sft
    results: []

jetmoe-8b-sft

This model is a fine-tuned version of jetmoe-8b on the HuggingFaceH4/ultrachat_200k, the HuggingFaceH4/airoboros-3.2, the HuggingFaceH4/Code-Feedback, the HuggingFaceH4/orca-math-word-problems-200k, the HuggingFaceH4/SystemChat and the HuggingFaceH4/capybara datasets. It achieves the following results on the evaluation set:

  • Loss: 0.9952

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
1.2458 1.0 2049 0.9776
1.1966 2.0 4099 0.9756
1.1073 3.0 6147 0.9952

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.1.2
  • Datasets 2.14.6
  • Tokenizers 0.15.2