metadata
base_model: jetmoe/jetmoe-8b
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrachat_200k
- HuggingFaceH4/airoboros-3.2
- HuggingFaceH4/Code-Feedback
- HuggingFaceH4/orca-math-word-problems-200k
- HuggingFaceH4/SystemChat
- HuggingFaceH4/capybara
model-index:
- name: jetmoe-8b-sft
results: []
jetmoe-8b-sft
This model is a fine-tuned version of jetmoe-8b on the HuggingFaceH4/ultrachat_200k, the HuggingFaceH4/airoboros-3.2, the HuggingFaceH4/Code-Feedback, the HuggingFaceH4/orca-math-word-problems-200k, the HuggingFaceH4/SystemChat and the HuggingFaceH4/capybara datasets. It achieves the following results on the evaluation set:
- Loss: 0.9952
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.2458 | 1.0 | 2049 | 0.9776 |
1.1966 | 2.0 | 4099 | 0.9756 |
1.1073 | 3.0 | 6147 | 0.9952 |
Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.1.2
- Datasets 2.14.6
- Tokenizers 0.15.2