Edit model card

SentenceTransformer based on Snowflake/snowflake-arctic-embed-m

This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Snowflake/snowflake-arctic-embed-m
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("jet-taekyo/snowflake_finetuned_recursive")
# Run inference
sentences = [
    'What must lenders provide to consumers who are denied credit under the Fair Credit Reporting Act?',
    'that consumers who are denied credit receive "adverse action" notices. Anyone who relies on the information in a \ncredit report to deny a consumer credit must, under the Fair Credit Reporting Act, provide an "adverse action" \nnotice to the consumer, which includes "notice of the reasons a creditor took adverse action on the application \nor on an existing credit account."90 In addition, under the risk-based pricing rule,91 lenders must either inform \nborrowers of their credit score, or else tell consumers when "they are getting worse terms because of \ninformation in their credit report." The CFPB has also asserted that "[t]he law gives every applicant the right to \na specific explanation if their application for credit was denied, and that right is not diminished simply because \na company uses a complex algorithm that it doesn\'t understand."92 Such explanations illustrate a shared value \nthat certain decisions need to be explained.',
    'measures to prevent, flag, or take other action in response to outputs that \nreproduce particular training data (e.g., plagiarized, trademarked, patented, \nlicensed content or trade secret material). \nIntellectual Property; CBRN \nInformation or Capabilities',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.8816
cosine_accuracy@3 0.9671
cosine_accuracy@5 0.9868
cosine_accuracy@10 1.0
cosine_precision@1 0.8816
cosine_precision@3 0.3224
cosine_precision@5 0.1974
cosine_precision@10 0.1
cosine_recall@1 0.8816
cosine_recall@3 0.9671
cosine_recall@5 0.9868
cosine_recall@10 1.0
cosine_ndcg@10 0.946
cosine_mrr@10 0.9282
cosine_map@100 0.9282
dot_accuracy@1 0.8816
dot_accuracy@3 0.9671
dot_accuracy@5 0.9868
dot_accuracy@10 1.0
dot_precision@1 0.8816
dot_precision@3 0.3224
dot_precision@5 0.1974
dot_precision@10 0.1
dot_recall@1 0.8816
dot_recall@3 0.9671
dot_recall@5 0.9868
dot_recall@10 1.0
dot_ndcg@10 0.946
dot_mrr@10 0.9282
dot_map@100 0.9282

Training Details

Training Dataset

Unnamed Dataset

  • Size: 714 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 714 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 11 tokens
    • mean: 18.46 tokens
    • max: 32 tokens
    • min: 21 tokens
    • mean: 175.32 tokens
    • max: 512 tokens
  • Samples:
    sentence_0 sentence_1
    What is the purpose of conducting adversarial testing in the context of GAI risks? Human-AI Configuration;
    Information Integrity; Harmful Bias
    and Homogenization
    AI Actor Tasks: AI Deployment, Affected Individuals and Communities, End-Users, Operation and Monitoring, TEVV

    MEASURE 4.2: Measurement results regarding AI system trustworthiness in deployment context(s) and across the AI lifecycle are
    informed by input from domain experts and relevant AI Actors to validate whether the system is performing consistently as
    intended. Results are documented.
    Action ID
    Suggested Action
    GAI Risks
    MS-4.2-001
    Conduct adversarial testing at a regular cadence to map and measure GAI risks,
    including tests to address attempts to deceive or manipulate the application of
    provenance techniques or other misuses. Identify vulnerabilities and
    understand potential misuse scenarios and unintended outputs.
    Information Integrity; Information
    Security
    MS-4.2-002
    Evaluate GAI system performance in real-world scenarios to observe its
    How are measurement results regarding AI system trustworthiness documented and validated? Human-AI Configuration;
    Information Integrity; Harmful Bias
    and Homogenization
    AI Actor Tasks: AI Deployment, Affected Individuals and Communities, End-Users, Operation and Monitoring, TEVV

    MEASURE 4.2: Measurement results regarding AI system trustworthiness in deployment context(s) and across the AI lifecycle are
    informed by input from domain experts and relevant AI Actors to validate whether the system is performing consistently as
    intended. Results are documented.
    Action ID
    Suggested Action
    GAI Risks
    MS-4.2-001
    Conduct adversarial testing at a regular cadence to map and measure GAI risks,
    including tests to address attempts to deceive or manipulate the application of
    provenance techniques or other misuses. Identify vulnerabilities and
    understand potential misuse scenarios and unintended outputs.
    Information Integrity; Information
    Security
    MS-4.2-002
    Evaluate GAI system performance in real-world scenarios to observe its
    What types of data provenance information are included in the GAI system inventory entries? following items in GAI system inventory entries: Data provenance information
    (e.g., source, signatures, versioning, watermarks); Known issues reported from
    internal bug tracking or external information sharing resources (e.g., AI incident
    database, AVID, CVE, NVD, or OECD AI incident monitor); Human oversight roles
    and responsibilities; Special rights and considerations for intellectual property,
    licensed works, or personal, privileged, proprietary or sensitive data; Underlying
    foundation models, versions of underlying models, and access modes.
    Data Privacy; Human-AI
    Configuration; Information
    Integrity; Intellectual Property;
    Value Chain and Component
    Integration
    AI Actor Tasks: Governance and Oversight
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 20
  • per_device_eval_batch_size: 20
  • num_train_epochs: 5
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 20
  • per_device_eval_batch_size: 20
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step cosine_map@100
1.0 36 0.9145
1.3889 50 0.9256
2.0 72 0.9246
2.7778 100 0.9282

Framework Versions

  • Python: 3.11.9
  • Sentence Transformers: 3.1.0
  • Transformers: 4.44.2
  • PyTorch: 2.4.1+cu121
  • Accelerate: 0.34.2
  • Datasets: 3.0.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
3
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jet-taekyo/snowflake_finetuned_recursive

Finetuned
(29)
this model

Evaluation results