mistral-7b-nli_cot_qkv
This model is a fine-tuned version of TheBloke/Mistral-7B-v0.1-GPTQ on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7749
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 12
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.426 | 0.9998 | 1196 | 0.4255 |
0.3664 | 1.9996 | 2392 | 0.4365 |
0.3221 | 2.9994 | 3588 | 0.4455 |
0.2804 | 4.0 | 4785 | 0.4577 |
0.2403 | 4.9998 | 5981 | 0.4719 |
0.2001 | 5.9996 | 7177 | 0.4948 |
0.1643 | 6.9994 | 8373 | 0.5278 |
0.1305 | 8.0 | 9570 | 0.5634 |
0.1011 | 8.9998 | 10766 | 0.6095 |
0.0768 | 9.9996 | 11962 | 0.6621 |
0.0577 | 10.9994 | 13158 | 0.7225 |
0.0445 | 11.9975 | 14352 | 0.7749 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.0.1+cu118
- Datasets 2.19.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for jd0g/mistral-7b-nli_cot_qkv
Base model
mistralai/Mistral-7B-v0.1
Quantized
TheBloke/Mistral-7B-v0.1-GPTQ