gbert-large-upos
This model is a fine-tuned version of deepset/gbert-large on the universal_dependencies dataset. It achieves the following results on the evaluation set:
- Loss: 0.1996
- Precision: 0.8253
- Recall: 0.7827
- F1: 0.7912
- Accuracy: 0.9414
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 438 | 0.3197 | 0.8098 | 0.7291 | 0.7486 | 0.8936 |
No log | 2.0 | 876 | 0.2261 | 0.8287 | 0.7679 | 0.7832 | 0.9269 |
No log | 3.0 | 1314 | 0.1996 | 0.8253 | 0.7827 | 0.7912 | 0.9414 |
No log | 4.0 | 1752 | 0.2183 | 0.8162 | 0.8006 | 0.8041 | 0.9435 |
No log | 5.0 | 2190 | 0.2120 | 0.8198 | 0.8025 | 0.8074 | 0.9496 |
No log | 6.0 | 2628 | 0.2339 | 0.8207 | 0.8068 | 0.8116 | 0.9489 |
No log | 7.0 | 3066 | 0.2728 | 0.8156 | 0.8045 | 0.8071 | 0.9486 |
No log | 8.0 | 3504 | 0.2790 | 0.8205 | 0.8110 | 0.8132 | 0.9527 |
No log | 9.0 | 3942 | 0.2854 | 0.8306 | 0.8096 | 0.8146 | 0.9527 |
No log | 10.0 | 4380 | 0.2906 | 0.8299 | 0.8115 | 0.8151 | 0.9534 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for izaitova/gbert-large-upos
Base model
deepset/gbert-largeDataset used to train izaitova/gbert-large-upos
Evaluation results
- Precision on universal_dependenciesvalidation set self-reported0.825
- Recall on universal_dependenciesvalidation set self-reported0.783
- F1 on universal_dependenciesvalidation set self-reported0.791
- Accuracy on universal_dependenciesvalidation set self-reported0.941