ivan-tan's picture
End of training
bd8581c verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
model-index:
  - name: my_forgetful_mind_model2
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9891304347826086

my_forgetful_mind_model2

This model is a fine-tuned version of facebook/wav2vec2-base on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0529
  • Accuracy: 0.9891

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 11

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6716 0.9655 14 0.6144 0.6630
0.5768 2.0 29 0.2991 0.9304
0.2108 2.9655 43 0.2372 0.9130
0.2452 4.0 58 0.1582 0.9565
0.1006 4.9655 72 0.0831 0.9848
0.0773 6.0 87 0.1206 0.9696
0.0477 6.9655 101 0.0585 0.9913
0.0431 8.0 116 0.0643 0.9870
0.0303 8.9655 130 0.0526 0.9891
0.0336 10.0 145 0.0523 0.9891
0.0285 10.6207 154 0.0529 0.9891

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1