Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Chinese-Mistral

🎉 新闻

🚀 介绍

随着Mistral AI公司开源其七十亿参数模型Mistral-7B,该模型超越Llama,成为当前最强大的开源模型之一。Mistral-7B在各类基准测试中,不仅超过了Llama2-13B,而且在推理、数学、代码生成任务中超过Llama2-34B。 然而,Mistral-7B的训练语料主要为英文文本,其中文能力较为欠缺。其次,Mistral-7B的词表不支持中文,导致其对中文的编码和解码效率较低,限制了在中文场景的应用。
为了克服这一局限,清华大学地球系统科学系地球和空间信息科学实验室基于Mistral-7B进行了中文词表扩充和增量预训练,增强了Mistral-7B在中文任务上的表现,并提高了其对中文文本的编解码效率。
项目地址:https://github.com/THU-ESIS/Chinese-Mistral

📥 模型下载

本项目开源了Chinese-Mistral-7B与Chinese-Mistral-7B-instruct:

模型 下载地址 说明
Chinese-Mistral-7B HuggingFace
wisemodel
ModelScope
完整基座模型
Chinese-Mistral-7B-Instruct-v0.1 HuggingFace
wisemodel
ModelScope
完整指令精调模型
中英文alpaca_gpt4进行lora微调
Chinese-Mistral-7B-Instruct-v0.2 HuggingFace
wisemodel
完整指令精调模型
百万条高质量数据进行lora微调

📈 模型性能

模型综合能力

我们采用C-Eval、CMMLU和MMLU三个评测数据集全面评估Chinese-Mistral-7B:

  • C-Eval:它是一个全面的中文基础模型评估套件。包含13948个多项选择题,涵盖52个学科和四个难度级别。它旨在评估模型在人文、社科、理工等多个学科大类上的知识和推理能力。
  • CMMLU:它是一个综合性的中文评估基准。涵盖了从基础学科到高级专业水平的67个主题。它专门用于评估语言模型在中文语境下的知识和推理能力。
  • MMLU:它是一个包含了57个子任务的英文评测数据集。涵盖了从初等数学、美国历史、计算机科学到法律等多个领域,难度覆盖高中水平到专家水平,有效地衡量了模型在人文、社科和理工等多个学科大类中的综合知识能力。

下表展示了开源社区较流行的中文Llama2、中文Mistral与我们发布的Chinese-Mistral-7B的评测结果。评测方式采用5-shot,采用opencompass在相同的实验条件下进行评测。

模型名称 C-Eval CMMLU MMLU 平均得分
Linly-Al/Chinese-LLaMA-2-7B-hf 31.2 30.14 35.09 32.14
hfl/chinese-llama-2-7b 27.4 33.38 37.25 32.68
Linly-Al/Chinese-LLaMA-2-13B-hf 39.9 42.48 52.54 44.97
hfl/chinese-llama-2-13b 41.0 43.25 52.94 45.73
gywy/Mistral-7B-v0.1-chinese 37.4 36.45 37.38 37.08
OpenBuddy/openbuddy-mistral-7b-v13-base 44.4 46.32 57.79 49.50
Chinese-Mistral-7B (本模型) 47.5 47.52 58.29 51.10

由上表可知,Chinese-Mistral-7B的中文和英文通识能力不仅超过同等参数量的中文Llama2模型,而且在多项评测中优于130亿参数量的中文Llama2。同时,Chinese-Mistral-7B的评测表现高于开源社区其他同等参数量的中文Mistral。

中文编解码效率

我们从WuDaoCorpus2中采样训练数据,使用sentencepiece训练中文BPE词表,并人工选取部分其他优秀中文词表进行词表融合。经过严格的人工审核,最终形成的词表大小为63776。为了提高模型计算效率,我们在词表末尾添加<|sym1|>、……、<|sym96|>,使得词表大小为128的倍数,最终得到的词表大小为63872。 我们随机选取了WuDaoCorpus2_part-2021278643作为测试数据以评测分词效果。经统计,测试数据包括67013857个单词,我们用单词数量除以分词后的Token数量,计算压缩率。压缩率越大,表明分词效果越好,在中文场景的编解码效率越高。

模型名称 模型类型 词表大小 Token数量 压缩率
meta-llama/Llama-2-7b-hf Llama 32000 97406876 0.6880
mistralai/Mistral-7B-v0.1 Mistral 32000 76269008 0.8787
THUDM/chatglm2-6b GLM 64789 43487673 1.5410
Linly-Al/Chinese-LLaMA-2-13B-hf Llama 40076 65402900 1.0246
hfl/chinese-llama-2-13b Llama 55296 45763513 1.4644
OpenBuddy/openbuddy-mistral-7b-v13-base Mistral 36608 65329642 1.0256
gywy/Mistral-7B-v0.1-chinese Mistral 48593 46670146 1.4359
Chinese-Mistral-7B (本模型) Mistral 63872 43044156 1.5569

由上表可知,Chinese-Mistral-7B在可观的词表大小条件下,取得了最高的压缩率,表明其能够高效处理中文文本。

💻 模型推理

如下是使用Chinese-Mistral-7B进行推理的代码示例。

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")

model_path = "itpossible/Chinese-Mistral-7B-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, device_map=device)

text = "我是一个人工智能助手,我能够帮助你做如下这些事情:"
inputs = tokenizer(text, return_tensors="pt").to(device)

outputs = model.generate(**inputs, max_new_tokens=120, do_sample=True)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

如下是使用Chinese-Mistral-7B-Instruct进行推理的代码示例。

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")

model_path = "itpossible/Chinese-Mistral-7B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, device_map=device)

text = "请为我推荐中国三座比较著名的山"
messages = [{"role": "user", "content": text}]

inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=300, do_sample=True)
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
print(outputs)

📝 训练数据

训练数据采样于WanJuan、baike2018qa、Dolma、gutenberg-books等高质量开源数据集。我们对这些数据集进行细粒度清洗,并充分考虑训练数据集中不同类别数据的占比。

⚠️ 局限性

Chinese-Mistral-7B的开发旨在为开源社区提供一个性能优越的中文大语言模型。请注意,由于模型大小及训练数据规模限制,本模型仍可能生成误导性内容或者有害内容。因此,在部署任何由Chinese-Mistral系列模型驱动的应用程序之前,开发人员必须进行安全测试,对模型进行相应调整,以满足安全性需求。

✒️ 引用

如果您觉得本项目对您的研究有所帮助或使用了本项目的模型,请引用本项目:

@misc{Chinese-Mistral,
    author = {Zhou, Chen and Yuqi, Bai},
    title = {Chinese-Mistral: An Efficient and Effective Chinese Large Language Model},
    year = {2024},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/THU-ESIS/Chinese-Mistral}}
}

结语

我们欢迎社区的支持和合作,共同推动通用大语言模型和领域大语言模型的发展。联系方式:
白玉琪,清华大学地球系统科学系长聘教授,实验室负责人,[email protected]
陈舟,清华大学地球系统科学系博士生,大语言模型组组长,[email protected]

Downloads last month
27
Safetensors
Model size
7.5B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for itpossible/Chinese-Mistral-7B-Instruct-v0.1

Quantizations
1 model