Edit model card

Model Card for Model ID

Model Details

Model Description

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

# Load model directly
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("isaacchung/MiniCPM-2B-RAFT-lora-hotpotqa-dev", trust_remote_code=True)

Training Details

Training Data

isaacchung/hotpotqa-dev-raft-subset

Training Procedure

Training Hyperparameters

-->

See https://github.com/isaac-chung/MiniCPM/commit/213282b679eb8eb054bb13f02af71b9d71ad3721.

Speeds, Sizes, Times [optional]

  • train_runtime: 4607.6477
  • train_samples_per_second: 5.209
  • train_steps_per_second: 0.651
  • train_loss: 0.5153028686841329
  • epoch: 9.52

Training Loss

From the last epoch:

'loss': 0.4504, 'grad_norm': 2.259155507591921, 'learning_rate': 2.7586206896551725e-06, 'epoch': 9.02}                                   
{'loss': 0.431, 'grad_norm': 1.7071411656099411, 'learning_rate': 2.586206896551724e-06, 'epoch': 9.05}                                    
{'loss': 0.4627, 'grad_norm': 1.7915555416805786, 'learning_rate': 2.413793103448276e-06, 'epoch': 9.08}                                   
{'loss': 0.4528, 'grad_norm': 1.9988269942330565, 'learning_rate': 2.2413793103448275e-06, 'epoch': 9.11}                                  
{'loss': 0.445, 'grad_norm': 1.8423666856380017, 'learning_rate': 2.0689655172413796e-06, 'epoch': 9.14}                                   
{'loss': 0.4424, 'grad_norm': 1.7539963730934427, 'learning_rate': 1.896551724137931e-06, 'epoch': 9.17}                                   
{'loss': 0.3817, 'grad_norm': 1.755668315740134, 'learning_rate': 1.724137931034483e-06, 'epoch': 9.21}                                    
{'loss': 0.4012, 'grad_norm': 1.8214703589809635, 'learning_rate': 1.5517241379310346e-06, 'epoch': 9.24}                                  
{'loss': 0.4567, 'grad_norm': 1.6490771602855827, 'learning_rate': 1.3793103448275862e-06, 'epoch': 9.27}                                  
{'loss': 0.491, 'grad_norm': 1.5838108179327266, 'learning_rate': 1.206896551724138e-06, 'epoch': 9.3}                                     
{'loss': 0.516, 'grad_norm': 1.7848893180960532, 'learning_rate': 1.0344827586206898e-06, 'epoch': 9.33}                                   
{'loss': 0.3674, 'grad_norm': 1.6589815898285354, 'learning_rate': 8.620689655172415e-07, 'epoch': 9.37}                                   
{'loss': 0.455, 'grad_norm': 1.6377170040397837, 'learning_rate': 6.896551724137931e-07, 'epoch': 9.4}                                     
{'loss': 0.4322, 'grad_norm': 1.7061632686271986, 'learning_rate': 5.172413793103449e-07, 'epoch': 9.43}                                   
{'loss': 0.3934, 'grad_norm': 1.784527156508834, 'learning_rate': 3.4482758620689656e-07, 'epoch': 9.46}                                   
{'loss': 0.4457, 'grad_norm': 1.5131773700813846, 'learning_rate': 1.7241379310344828e-07, 'epoch': 9.49}                                  
{'loss': 0.4026, 'grad_norm': 1.8239453129182908, 'learning_rate': 0.0, 'epoch': 9.52}

Technical Specifications [optional]

Compute Infrastructure

Hardware

  • 1x NVIDIA RTX 6000 Ada

Model Card Authors

Isaac Chung

Model Card Contact

Isaac Chung

Downloads last month
14
Safetensors
Model size
2.72B params
Tensor type
FP16
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.