SimLM: Pre-training with Representation Bottleneck for Dense Passage Retrieval
paper available at https://arxiv.org/pdf/2207.02578
code available at https://github.com/microsoft/unilm/tree/master/simlm
Paper abstract
In this paper, we propose SimLM (Similarity matching with Language Model pre-training), a simple yet effective pre-training method for dense passage retrieval. It employs a simple bottleneck architecture that learns to compress the passage information into a dense vector through self-supervised pre-training. We use a replaced language modeling objective, which is inspired by ELECTRA, to improve the sample efficiency and reduce the mismatch of the input distribution between pre-training and fine-tuning. SimLM only requires access to unlabeled corpus, and is more broadly applicable when there are no labeled data or queries. We conduct experiments on several large-scale passage retrieval datasets, and show substantial improvements over strong baselines under various settings. Remarkably, SimLM even outperforms multi-vector approaches such as ColBERTv2 which incurs significantly more storage cost.
Results on MS-MARCO passage ranking task
Model | dev MRR@10 | dev R@50 | dev R@1k | TREC DL 2019 nDCG@10 | TREC DL 2020 nDCG@10 |
---|---|---|---|---|---|
RocketQAv2 | 38.8 | 86.2 | 98.1 | - | - |
coCondenser | 38.2 | 86.5 | 98.4 | 71.7 | 68.4 |
ColBERTv2 | 39.7 | 86.8 | 98.4 | - | - |
SimLM (this model) | 41.1 | 87.8 | 98.7 | 71.4 | 69.7 |
Usage
Get embeddings from our fine-tuned model:
import torch
from transformers import AutoModel, AutoTokenizer, BatchEncoding, PreTrainedTokenizerFast
from transformers.modeling_outputs import BaseModelOutput
def l2_normalize(x: torch.Tensor):
return torch.nn.functional.normalize(x, p=2, dim=-1)
def encode_query(tokenizer: PreTrainedTokenizerFast, query: str) -> BatchEncoding:
return tokenizer(query,
max_length=32,
padding=True,
truncation=True,
return_tensors='pt')
def encode_passage(tokenizer: PreTrainedTokenizerFast, passage: str, title: str = '-') -> BatchEncoding:
return tokenizer(title,
text_pair=passage,
max_length=144,
padding=True,
truncation=True,
return_tensors='pt')
tokenizer = AutoTokenizer.from_pretrained('intfloat/simlm-base-msmarco-finetuned')
model = AutoModel.from_pretrained('intfloat/simlm-base-msmarco-finetuned')
model.eval()
with torch.no_grad():
query_batch_dict = encode_query(tokenizer, 'what is qa')
outputs: BaseModelOutput = model(**query_batch_dict, return_dict=True)
query_embedding = l2_normalize(outputs.last_hidden_state[0, 0, :])
psg1 = 'Quality assurance (QA) is a process-centered approach to ensuring that a company or organization is providing the best possible products or services. It is related to quality control, which focuses on the end result, such as testing a sample of items from a batch after production.'
psg1_batch_dict = encode_passage(tokenizer, psg1)
outputs: BaseModelOutput = model(**psg1_batch_dict, return_dict=True)
psg1_embedding = l2_normalize(outputs.last_hidden_state[0, 0, :])
psg2 = 'The Super Bowl is typically four hours long. The game itself takes about three and a half hours, with a 30 minute halftime show built in.'
psg2_batch_dict = encode_passage(tokenizer, psg2)
outputs: BaseModelOutput = model(**psg2_batch_dict, return_dict=True)
psg2_embedding = l2_normalize(outputs.last_hidden_state[0, 0, :])
# Higher cosine similarity means they are more relevant
print(query_embedding.dot(psg1_embedding), query_embedding.dot(psg2_embedding))
Citation
@article{Wang2022SimLMPW,
title={SimLM: Pre-training with Representation Bottleneck for Dense Passage Retrieval},
author={Liang Wang and Nan Yang and Xiaolong Huang and Binxing Jiao and Linjun Yang and Daxin Jiang and Rangan Majumder and Furu Wei},
journal={ArXiv},
year={2022},
volume={abs/2207.02578}
}