|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- audiofolder |
|
metrics: |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: my_awesome_mind_model |
|
results: |
|
- task: |
|
name: Audio Classification |
|
type: audio-classification |
|
dataset: |
|
name: audiofolder |
|
type: audiofolder |
|
config: initial_audio |
|
split: test |
|
args: initial_audio |
|
metrics: |
|
- name: F1 |
|
type: f1 |
|
value: 0.2564102564102564 |
|
- name: Precision |
|
type: precision |
|
value: 0.7142857142857143 |
|
- name: Recall |
|
type: recall |
|
value: 0.15625 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# my_awesome_mind_model |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6889 |
|
- F1: 0.2564 |
|
- Precision: 0.7143 |
|
- Recall: 0.1562 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:| |
|
| No log | 1.0 | 2 | 0.6914 | 0.2162 | 0.8 | 0.125 | |
|
| No log | 2.0 | 4 | 0.6894 | 0.4815 | 0.5909 | 0.4062 | |
|
| No log | 3.0 | 6 | 0.6887 | 0.3256 | 0.6364 | 0.2188 | |
|
| No log | 4.0 | 8 | 0.6881 | 0.3415 | 0.7778 | 0.2188 | |
|
| 0.6907 | 5.0 | 10 | 0.6883 | 0.3415 | 0.7778 | 0.2188 | |
|
| 0.6907 | 6.0 | 12 | 0.6890 | 0.2564 | 0.7143 | 0.1562 | |
|
| 0.6907 | 7.0 | 14 | 0.6894 | 0.2564 | 0.7143 | 0.1562 | |
|
| 0.6907 | 8.0 | 16 | 0.6894 | 0.2105 | 0.6667 | 0.125 | |
|
| 0.6907 | 9.0 | 18 | 0.6890 | 0.2564 | 0.7143 | 0.1562 | |
|
| 0.6851 | 10.0 | 20 | 0.6889 | 0.2564 | 0.7143 | 0.1562 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1 |
|
- Datasets 3.0.0 |
|
- Tokenizers 0.19.1 |
|
|